
Journal of Development Economics
 

Behavioral and Technological Strategies to Mitigate Effects of Air Pollution on Children:
Empirical Evidence from an RCT in Delhi's Schools

--Manuscript Draft--
 

Manuscript Number: DEVEC-D-24-00902R1

Article Type: Registered Report Stage 1: Proposal

Section/Category: Health, Education, gender, poverty

Keywords: Environment and Development;  Air Pollution;  Mitigation Strategies;  Human Capital

Corresponding Author: J. Cristobal Ruiz-Tagle
The University of Manchester
London, London UNITED KINGDOM

First Author: J. Cristobal Ruiz-Tagle

Order of Authors: J. Cristobal Ruiz-Tagle

Nikita Sangwan

M. Marcela Jaime

César Salazar

Kanishka Kacker

Pankaj Kumar

Abstract: Air pollution is a serious problem in many regions of the developing world as it
adversely affects the health, education, and human capital of the population, especially
children. Mitigating strategies can potentially alleviate some of the most severe effects
of high air pollution. By conducting an RCT in Delhi's KV schools, this study assesses
the potential role of behavioral and technological strategies in mitigating the adverse
effects of high air pollution on the health and educational outcomes of students. In
particular, we evaluate the effectiveness of an educational campaign during the period
of peak air pollution and air purifiers in classrooms. This work is important for building
human capital in low- and middle-income countries faced with high pollution levels,
which is essential for their human and economic development.

Response to Reviewers:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Letter to the editor  

 

Dear Professor Dean Yang, Co-Editor of Journal of Development Economics,  

 

Thank you for the opportunity to revise and resubmit our manuscript for Registered Report 
Stage 1. We have considered all suggestions by referees. We have implemented some key 
changes in a revised version of our manuscript. Moreover, we have written a detailed 
response to referees (please see attached letter). In our response, we often reference 
specific sections and line numbers of the revised manuscript. 

 

We have paid particular attention to issues you have flagged. Specifically:  

(1) As pointed out by Ref 1, the outcome variable can be best understood as air 
pollution inside classrooms, rather than classroom pollution exposure. 
Accordingly, we have changed the language throughout the manuscript and we are 
responding to Ref 1’s concern below. 

 

(2) In our response to referees, we have added a section discussing cost-effectiveness. 
Moreover, we even expanded onto a sketch of cost-benefit analysis. This is a 
‘strawman’ exercise – at this point – of what we would be able to write in the final 
version of the paper once we have our experimental results (i.e., ‘Stage 2 Registered 
Report’, if we are successful with this R&R). 

 

(3) Contribution to existing and emerging literature and multiple treatment arms.  

To make a clearly unique contribution to the literature we are bringing the 
Educational and Behavioral Strategies (EBS) treatment to the forefront of our 
experimental work. We have followed recommendations from both referees for 
having two treatment arms. In one treatment arm we assess the EBS treatment 
alone, and in the other treatment arm we assess an intervention of EBS and 
Purifiers treatment coupled together.  

We argue that this work makes a unique contribution to the existing and emerging 
literature by focusing on the role of education and behavioral change on protecting 
children’s health. Importantly, Information-based interventions are less costly than 
technological interventions and can be easily scaled up. Thus, assessing 
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experimentally the effect of an educational and behavioral intervention can inform 
policymakers about the cost-effectiveness of this type of policy. 

 

 

(4) Spillovers and sample size. 

In our response to Ref 2, we have addressed many of the main issues regarding 
spillovers. While we cannot increase the sample size due to budgetary and 
administrative limitations, we discuss how we are trying to contain the spillovers in 
the paper and in our response to Ref 2 below. 

 

We would like to also bring to your attention the next section in which we explain additional 
changes we have done to the project design and Registered Report Stage 1. 

 

Thank you very much for considering our work for Register Report Stage 1. We are hopeful 
that the revised manuscript will result in a positive outcome of JDE’s pre-results review. 

 

Sincerely, 

 

J. Cristobal Ruiz-Tagle  

(On behalf of our research team) 

 

 

 

 

 

 

 

 

 



Other changes to the Revised Registered Report Stage 1 

Please note that we have made a few changes to our original Stage 1 manuscript.  

First, we have changed our timeline slightly to better reflect the actual implementation of 
the fieldwork. We have pushed back the starting of the interventions and starting data 
collection at the baseline by about two to three weeks (we are facing delays getting 
started). However, we have managed to extend data collection into 2025. Thus, we will 
effectively be conducting the interventions during November, December 2024, and January 
2025 – the three months of peak PM pollution in Delhi, as shown in Figure 1.  

Second, we have added an additional survey wave. As a consequence, what used to be the 
‘Endline’ survey (in the previous manuscript) is now labeled as a ‘Midline’ survey, 
scheduled for December 2024. And we have moved the ‘Endline’ survey to early February 
2025. Please see the updated Timeline section.  

Relatedly, we have applied for additional research funding to extend data collection, past 
the updated Endline, and thus continue surveying these students well into 2025. This will 
allow us to better examine cumulative effects and mid-to-long term effects. [The outcome 
of this grant application is still to be known.] 

Third, we have decided to change the way we assess students' lung capacity. Instead of 
using spirometry, we will be using Peak Expiratory Flow (PEF) meters. The reason for this 
change is the user-friendliness of the PEF meters over spirometers. Whereas conducting 
spirometry requires highly-trained professionals and lengthy explanations to the 
patients/students for properly conducting the tests (plus trial and error), PEF meters are 
much easier to use and are recommended by doctors for personal monitoring of 
respiratory conditions (such as asthma). Importantly, as with spirometry PEF meters allow 
for readily assessment and test of lung obstruction, and there is a direct relationship 
between PEF test scores and spirometry test scores. It is important to note that the main 
difference between spirometers and PEF meters is that the former allows for measuring 
lung restriction in addition to lung obstruction. However, for purposes of our project and 
for conducting power analysis of expected effects, lung obstruction is considered a good 
measure of lung capacity as this is more common in children (lung restriction is more 
common for those suffering from lung cancer, who have undergone lung surgery or other 
major issues that are very rare in children).  

Fourth, to expedite lung capacity testing (due to the time it takes to conduct these tests), 
we have decided to test only on a subsample of 10 percent of students in each class 
(about 5 students per class). We have re-run the power calculations and have updated the 
Minimum Detectable Effect (shown in Table 2). This MDE increases from 3.4 to 4.8, which 
is still well below the expected effect of 12.32. Thereby, we are confident to be able to 
observe a statistically significant effect.   
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Response to referees 

 

A. Response to Ref #1 

Thank you for your insightful comments and suggestions. Below we provide point-by-point 
responses to your comments and detail the corresponding revisions we have made to the 
earlier draft of the Registered Report Stage 1. 

 

General comments 

 

1. Contributions 

 

a. “High” and “Very High Air pollution setting”. Our contribution could be best 
understood in terms of mitigation strategies and their associated outcomes in 
school children in terms of both health and educational outcomes (the China study 
by Yang et al., (2021) does not assess educational outcomes).  

We didn’t intend to make the distinction between a “high” (say, China) and a “very 
high” (say, India) air pollution setting, although we acknowledge that our writing was 
not clear enough here (our fault). Nonetheless, now we note, in Footnote 9, that 
PM2.5 concentrations for Delhi during the period of our intervention are about twice 
as large as that for the China study. 

b. Claim about contribution of information intervention. We have toned down the 
reach of the contributions by not referring to cost-effectiveness at this point. 
Nonetheless, in addition to evaluating the effectiveness of the interventions we plan 
on also evaluating their cost-effectiveness (we explain this in further detail below).  

  

2. Outcomes 

 

a. Exposure. Thank you very much for your suggestion. We have now changed 
the language from ‘exposure to air pollution inside classrooms’ to simply ‘air 



pollution inside classrooms’ regarding the Purifier treatment and its 
associated hypothesis. 

 

b. Lung capacity at baseline. We are indeed taking baseline measures of lung 
capacity as we acknowledge that this variable is indeed very student-
specific. Moreover, we’ll be analyzing the student-specific change in lung 
capacity – as compared to baseline levels – for both the treatment groups 
and the control group. 

 

c. Self-Reported Health. Unfortunately, our budget does not allow for hiring 
health professionals or visiting absent students at home. 

However, please note that we are planning to ask very simple questions 
about self-reported health, so that we expect students to understand them. 
Examples of these questions are “Do you experience Coughing?”, if so, 
“when?”[we give them options of the various timelines/events]; “Have you 
noticed any changes in your breathing?”, If so, “when?”. On the other hand, 
for questions about respiratory symptoms that are more technical and/or 
harder to remember, we expect that those students who have seen a 
healthcare professional recently, and/or have received treatment due to 
some respiratory disease, will be able to identify and remember experiencing 
specific respiratory symptoms. 

Moreover, as with lung capacity, we will be conducting these self-reported 
health questions both at baseline and at midline/endline (to look at student-
specific change in the answers). So, if a student correctly understands and 
remembers symptoms at baseline, then we will expect that he/she will also 
do so at midline/endline. 

Students with illnesses may not report to school. If this is due to diseases 
linked to air pollution, and because of the time pattern of variation of air 
pollution in Delhi, this should be more likely to occur at the time of the 
midline/endline survey (when air pollution is and has been very high over the 
previous weeks) than at the time of baseline survey. Moreover, this selection 
should be less likely among those in the treatment groups than among those 
in the control groups. If this happens, it is more likely that we will be missing 
the observations for those sicker students in the control group. Thereby, this 
selection would bias our results towards the null of no effect. 

 



d. End-of-year exam grades. These exams are standardized for students in KV 
schools. However, we cannot guarantee that the grading scale will not be 
‘graded to a curve’ and, therefore, grading may change as a result of 
assignment to treatment.  

If this happens, however, we may be able to identify this effect by contrasting 
grades in end-of-year exams to results of cognitive tests in midline/endline 
surveys (whereby results of cognitive tests are not ‘graded to a curve’). 
Unfortunately, we are afraid that we cannot prevent teachers from ‘grading 
to a curve’. 

 

e. Assessment of adoption of personal mitigation strategies. When laying 
out Hypothesis 1.2. we have added Footnote 20 explaining these behavioral 
strategies and a reference to the section (section 3.d.i.) where we further list 
the specific strategies being assessed.  

Footnote 20 reads: “We are planning on teaching students ten 
personal exposure mitigation strategies. These include: avoidance 
behaviors of ambient and indoor air pollution, defensive behaviors for 
ambient and indoor air pollution, behavioral change to minimize 
emissions of indoor air pollution, and heightened awareness of own 
respiratory health. Section 3.d.i. below explains these personal 
behavioral strategies in further detail.” 

In addition, for the section that explains the power analysis for this outcome, 
we have added footnotes 26 and 27 that explain, respectively, how this 
outcome has been assessed in the existing literature (Araban et al., 2017) 
and how we are planning to assess it. In a nutshell, we will follow a similar 
index, as in Araban et al. (2017), based on rating answers to questions about 
adoption of the behavioral strategies listed in section 3.d.i.  

 

3. Air purifiers alone as an intervention. Thank you very much for your suggestion. 
Following this advice, and that of the other reviewer, we have revised the treatment 
arms. Now, there will be two treatment arms, one with EBS alone and another one 
with both EBS and Purifiers. This is now explained in Section 3.d (lines 315 to 322). 

 

4. Air purifiers compliance. Thank you for pointing this out. Air purifiers will be 
running continuously throughout the period of our intervention.  



Additionally,our research team will pay weekly visits to the schools over the 
weekends to ensure the purifiers and sensors are working correctly. And we have 
requested the point-of-contact person at each school to immediately inform us if 
they notice any functionality issues. 

 

5. Air Pollution Monitors. Yes, the PM pollution monitors will be deployed in all 
classrooms (both treatments and control), including those assigned to the EBS-only 
treatment. 

 

6. Spillovers (a & b). Thank you for pointing this out. We have now corrected this and 
relabeled that discussion in a section titled ‘possible indirect effects’ (Section 3.d.ii, 
lines 409 to 444), and (as suggested) we are still planning to collect the necessary 
data to analyze these effects. 

  

7. Timeline. We are now planning for the air purifiers to continue running into January 
and February (both months of very high air pollution, as shown in Figure 1). 
Moreover, we have recently submitted a bid for an additional research grant to 
obtain the necessary funding to extend data collection from May to September 
2025. We are now waiting for the outcome of this grant proposal. 

On the other hand, after the end of the Indian academic year, the purifiers will be 
collected and made available for future research projects.  

 

8. Cost Effectiveness. We are indeed collecting information on the costs of the 
interventions. The main pecuniary costs are those of the air purifiers, while the main 
non-pecuniary costs are those of the small curriculum change to allow for the EBS 
treatment.  
 

In addition, at the end of this response, we present a discussion that outlines how 
we will conduct a ‘back of the envelope’ cost-benefit analysis and cost-
effectiveness analysis. 

 

Specific comments – These are all suggestive. 

1. Opening in the Introduction section. Thank you for your suggestion. The objective of 
this work is to focus on both health and educational effects of mitigating air pollution for 



school children. We believe that the effects of air pollution on health, through increased 
morbidity, could impact school absenteeism and broader educational outcomes. 
Nonetheless, this may not be the only channel, as you mentioned. Air pollution may also 
impact students’ cognition (even if these students do not miss schooldays) in a way that is 
reflected in lower scores in cognitive tests and lower grades in exams. Therefore, we would 
like to keep the focus on health effects at the beginning of the introduction.  

 

2. Data in Background section. Thank you for pointing this out. We have now updated it to 
the latest available data, from 2023.  

3. Change in language for air pollution instead of air quality. Thank you for pointing this 
out. We have changed this as per your suggestion. 

 

4. Claim about reach of interventions. Thank you for your comment. In the revised 
intervention design, as discussed in response to your comment 3, we now have a 
“Behavioral Strategies”-only treatment arm. This allows us to test the cost-effectiveness of 
this potentially scalable intervention. Kindly refer to the discussion below for a more 
detailed discussion of cost-effectiveness and cost-benefit analysis. 

 

5. Wording of ‘tangible benefits’. Thank you for pointing this out. We have changed this, 
as suggested. 

 

 

 

 

 

 

 

 

 

 

 



Cost-Effectiveness and Cost-Benefit Analysis 

The benefits of reduced air pollution in schools can additionally be assessed in terms of potential 
improvements in educational and learning outcomes. To that end here we also sketch a cost-
effectiveness analysis of improving students’ performance in cognitive tests, and contrast this with 
alternative policy interventions. The Purifiers treatment (the most expensive treatment) costs about 
$ 328 annually, and the expected improvements in a cognitive assessment test is .365 standard 
deviations (SD), averaging for boys and girls. Then, for an average classroom size of 50 students, 
the annual costs of 0.1 SD improvement in cognitive tests is $1.80 per student. This figure 
contrasts with Banerjee et al. (2007), who evaluate a remedial education program in India that 
costs $ 2.25 (that is, $ 3.50 in 2024 dollars) per 0.1 SD of a cognitive assessment test. This figure 
can also be contrasted with Kremer et al. (2004), who calculate costs per standard deviation of 
cognitive test for a range of educational programs in India. Kremer et al. (2004) find that the most 
cost-effective program costs between $ 1.77 and $ 3.53 per 0.1 SD (that is, between $ 3 and $ 6 in 
2024 dollars). Thus, demonstrating that this intervention can also be cost-effective for improving 
outcomes in cognitive tests. 

  

Additionally, in this section we sketch how we can conduct a back-of-the-envelope calculation for 
Cost-Benefit Analysis (CBA) of the effects of our interventions by weighing the direct costs of the 
interventions against their expected benefits. As benefits we will first consider the reduction in 
morbidity costs associated with treating illnesses exacerbated by particle air pollution, particularly 
for children. These morbidity costs should be deemed as a lower bound of the total human costs of 
air pollution in children.  

Particle air pollution is causally linked to asthma (Jans et al., 2018)1 – both a chronic and an acute 
respiratory disease – that is more prevalent in children than in adults. For Delhi, Salvi et al. (2021) 
conduct spirometry tests to empirically examine the prevalence of asthma among 12- to 14-year-
old students, Based on results from these tests and an widely used index of obstructive lung 
capacity2 Salvi et al. (2021) estimate that 29.31 percent of children in Delhi are found to have 
obstructed lungs consistent with asthma.3 However, most children that are found to suffer from 
asthma in Salvi et al. (2021)’s sample do not receive treatment. In fact, Salvi et al. (2021) reports 
that only 12 percent out of those found to have obstructed lungs consistent with asthma in Delhi 

 
1 See Paulin et al. (2016) for a review of the literature showing statistical associations between exposure to 
particle air pollution and asthma as well as other indicators of lung capacity,  
2 Spirometry tests yield both measures of Full Expiratory Volume in 1 second (FEV1) and Forced Vital 
Capacity (FVC). The index of obstructive lung capacity considers the ratio FEV1/FVC. A test result ratio that is 
between 50 and 59 percent indicates moderately severe lung obstruction, a test result ratio less than 50 
percent indicates severe lung obstruction and a test result ratio less than 35 percent indicates very severe 
lung obstruction. 
3 In diagnosing asthma disease, after a lung capacity test that yields results indicative of obstructed lungs, 
doctors give the patient a puff of a bronchodilator (such as albuterol or salbutamol). A new spirometry test is 
conducted approximately 20 minutes after the application of the bronchodilator. If the index of lung capacity, 
FEV1/FVC, improves by more than 10 percentage points, then doctors usually diagnose the patient as 
suffering from asthma. Importantly, as we lack the capacity to medically diagnose asthma, in this work we 
will not provide a bronchodilator to students. 



are actually diagnosed with asthma. That is, only 3.52 percent of children in Delhi are effectively 
diagnosed and receive some sort of treatment. In addition, Aneeshkumar and Singh (2018) 
estimates the mean annual direct cost for treating asthma in India at $223 (i.e., ₹18,737 /year). 
Therefore, to estimate the potential monetized health benefits of our interventions we will focus on 
the expected effects on reducing the prevalence of asthma in children and its associated cost.  

To measure changes in severe lung obstruction associated with asthma we will conduct respiratory 
tests of obstructive lung capacity on students in our sample, both at baseline and at midline/endline 
surveys. As in Salvi et al. (2021) we will link changes in lung obstruction to changes in asthma, while 
also factoring in that only about 12 percent of those with asthma actually receive a diagnosis and 
treatment. Finally, we will employ Aneeshkumar and Singh (2018)’s cost estimates for treatment of 
asthma to monetize the health benefits of our interventions in terms of the expected reductions in 
cost of treating asthma.  

We illustrate this exercise by conducting a prospective CBA of the expected effect of our intervention 
on students’ respiratory health associated with the Purifiers treatment (the most expensive of our 
treatments). The expected reduction in average indoor PM2.5 pollution under the Purifiers treatment 
– a 12.04 μg/m3 reduction in average indoor PM2.5 pollution over a 2-month period  – is expected to 
result in an improvement of 12.32 points in the lung capacity index (see subsection 3.d.iii. and Table 
2 above).4 Using the cutoff for severe lung obstruction employed by Salvi et al. (2021) (i.e., lung 
capacity index FEV1/FVC < 60 %), this improvement in PM2.5 pollution would result in a reduction in 
the rate of students with asthma of 24.15 percentual points. That is, down to 5.16 percent of students 
with asthma. As in Salvi et al., 2021 we assume that only 12 percent of those fewer asthma cases 
would actually be corroborated by a medical diagnosis. Thus, the Purifiers treatment would bring 
diagnosed asthma cases, from an average of 3.52 percent, down by 2.9 percentual points. The 
benefits of these fewer diagnosed cases of asthma can be monetized using Aneeshkumar and Singh 
(2018)’s costing estimates for treating those children diagnosed with asthma. Therefore, this 
reduction in confirmed asthma cases should result in an average annual savings of $ 6.46 per 
student, or $ 323 per 50 students (~ per number of students in an average sized classroom). On the 
other hand, the direct costs of the purifiers equipment is $240 and their associated monthly 
operational costs are approximately $ 8.14.5 Thereby, the cost of procuring and running this 
equipment for a 9-month academic year is $ 313.25. To this, we should add the costs of producing 
the material for the educational information, which should amount to about $ 20 or $ 30 per 
classroom. Together, these costs are on par with the monetized health benefits from reduced 
expenditure for treating asthma – arguably a lower bound for the overall health benefits of reducing 
air pollution in children. 
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B. Response to Ref #2 

Thank you very much for acknowledging the potential for contribution of our paper. Below 
we provide point-by-point responses to your insightful comments and suggestions and 
detail the corresponding revisions we have made to the earlier draft of the Registered 
Report Stage 1. 

 

  1.) RCT Design for explicitly distinguishing contribution of this paper. 

Thank you very much for noting the potential for a massive impact of this study and 
contribution coming from our paper.  

We are aware that emerging literature (i.e., currently ongoing RCTs) may provide 
experimental evidence of the effect of technology-based mitigation strategies (air purifiers) 
in reducing classroom air pollution exposure and affecting educational outcomes. 
However, our experimental design also advances the literature by focusing on the role of 
an educational campaign and behavioral change in reducing air pollution exposure among 
school children. Our project assesses the effect of this sort of campaign and its associated 
effects on respiratory health and educational outcomes. Information-based interventions 
are less costly and, therefore, can be easily scaled up. Therefore, we believe that it is 
important to explore the effect of this type of intervention for informing policymakers about 
the cost-effectiveness of these policies. 

 

2.) 

a.) Sample size and spillovers. Thank you for your comment. We have taken various 
measures to minimize spillovers and have added a discussion in the paper. To minimize 
possible spillovers of the information and education treatment we are taking additional 
provisions. For instance, we will no longer produce and display posters inside classrooms 
in the treatment group. Instead, we will display a video in the classroom, and this video will 
not be shareable with anyone else (in particular, it won’t be shareable with students not in 
the treatment group). As explained in the revised Registered Report (lines 389 to 394), this 
video explains the problem of air pollution and teaches students about personal strategies 
to mitigate the effects of air pollution on their own health. A working version of this video 
can be found at this link https://bityl.co/SFpU. In addition, at the time of the showing of the 
video, we will hand a digital leaflet explaining these strategies (with figures and text similar 
to the ones shown in Appendix C of the Registered Report). After the showing of the video, 
the students will go over this leaflet and answer a few follow-up questions on their 
understanding of the video. We have also included a follow-up question of whether they 

https://bityl.co/SFpU


have siblings in our treatment classrooms, to be able to account for any intra-household 
spillovers.. 

Moreover, if information spillovers remain after taking these provisions, we will be able to 
measure them by means of contrasting outcomes in control classrooms to those in ‘pure 
control’ schools (whereby, in these ‘pure control schools’ there will be no class assigned 
to the information and education treatment, nor to the purifiers treatment). Thus, we will 
be able to account for this possible spillover in our analytical framework if they exist. 

Therefore, to the extent that these provisions allow us to effectively minimize information 
spillovers, and by properly accounting for them in our analytical framework, we expect that 
our experimental design will yield effective variation of outcomes at the class level (for 
both indoor air pollution and rate of absenteeism) and at the individual level (for all other 
health and educational outcomes). 

 

Finally, both our budget and our agreement with the head of KV schools in Delhi, 
unfortunately, does not allow us to expand our sample of schools beyond the 10 schools 
for this project. Notably, we have a total of 126 classrooms across 10 schools in Delhi’s KV 
schools. Of these classrooms, 54 have two shifts of classes a day (morning and afternoon), 
making for a total of 180 classes under this study. We are confident that, with this number 
of observations, our power analysis for the Minimum Detectable Effect (MDE) is sensible. 
Here again, the spillover will further be limited across the morning and evening sessions. 

  

b.) Multiple treatment arms and cross-randomization. Thank you for your valuable 
feedback. Sincere apologies if it was not clear enough, we had initially intended for two 
treatments – (1) Purifiers and (2) Information & Behavior treatments – in two treatment 
arms, with one treatment in each treatment arm. However, as per your and the other 
referee's suggestions we have revised it, as follows.  

Section 3.d (lines 315 to 322) now states that we will randomly assign the 
classrooms into one of three groups: “(Group 1) those assigned to treatment 
Educational & Behavioral Strategies (EBS), (Group 2) those assigned to both 
treatment EBS and treatment Purifiers, jointly, and (Group 3) a Control group”. 

Additionally, we discuss the cost-effectiveness considerations in the response to the other 
referee above.       

 

c.) Measuring actual usage. Thank you for your comment. Both the indoor PM pollution 
sensors and the Air Purifiers will be running continuously during this period. This has been 
discussed and agreed upon with the school principals. Regarding concerns about 



electricity expenses, it’s important to note that electricity for KV schools is heavily 
subsidized in India. Both air purifiers and PM pollution sensors are low-energy 
consumption devices and, therefore, should not substantially increase electricity costs. 
Additionally, our research team will run regular data quality checks and also have weekly 
visits to the schools over the weekends to ensure the purifiers and sensors are functioning 
correctly. 

 

d.) Future potential for scaling up. Thank you for your feedback and noting the massive 
potential of scaling up given the countrywide presence of KV school. That, deed, was one 
of the underlying reasons for the choice of this collaboration.  

As suggested by you and the first referee, we revised the design to have two treatment 
arms, as explained above in response to your comment 2b. 

Moreover, when we conduct the randomisation we will check for the balance on ambient 
air pollution around each school. However, data on PM pollution from previous years 
suggests that this may not be a significant concern for Delhi. The map below marks the 
location of the KV Schools in our sample and plots average PM2.5 pollution, from Delhi’s air 
quality monitoring stations, for the period October to December 2023.6 As shown below, 
the schools in our sample are all exposed to average ambient PM2.5 in the ‘Very Poor’ 
category (range 120 to 250 m/g3), with little spatial heterogeneity.     

 
6 There are 40 Continuous Ambient Air Quality Monitoring Stations (CAAQMS) spread across Delhi. The 
Central Pollution Control Board (CPCB) and Delhi Pollution Control Committee (DPCC) provide real-time 
recorded data from all the functioning CAAQMS on multiple air quality variables (CCR ; DPCC). There are 9 
CAAQMS which are located near the 10 school sites and provide daily data on PM2.5 and PM10. There are 8 
sites with monitoring stations located within a radius of 1.5 km and the rest of the 2 sites have monitoring 
stations located within a radius of 6.5 km. 
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1. Introduction 30 

 31 

Air pollution is linked to millions of deaths in the developing world and a myriad of other 32 

health problems (WHO 2016, HEI 2020). South Asia, and India in particular, suffers 33 

from some of the highest concentrations of air pollution, where Delhi consistently ranks 34 

at the very top of the most polluted cities in the world (IQAir, 2024). Air pollution is 35 

linked to 5.3 fewer years of life expectancy for India and to 11.9 fewer years of life 36 

expectancy for Delhi (AQLI 2023). In this work we experimentally assess technological 37 

and behavioral strategies to mitigate the adverse effects of air pollution on children in 38 

Delhi schools.  39 

Air pollution also negatively impacts education and human capital accumulation, thus 40 

hampering human and economic development (Aguilar-Gomez et al., 2022). Avoiding 41 

exposure to air pollutants is especially important for children (Nhung et al., 2017; 42 

Goldizen et al., 2016; Schwartz, 2014) and for those suffering from chronic pulmonary 43 

diseases, such as asthma which is more prevalent in children (Laumbach et al., 2015).1 44 

Air pollution exposure is causally linked to adverse effects on children’s health (Currie 45 

and Neidell, 2005), school absenteeism (Currie et al., 2009; Chen et al., 2018), 46 

standardized test scores (Bharadwaj et al., 2017; Carneiro et al., 2021; Heissel at al., 47 

2022; Heyes and Saberian, 2024) as well as test-takers’ future wages (Ebenstein et al., 48 

2016).  For India, exposure to fine particulate matter (i.e., particulates of size of 2.5 49 

microns or smaller, PM2.5) is causally linked to increased school absenteeism 50 

(Singh,2022) and reduced academic performance of children in rural (Balakrishnan and 51 

Tsaneva, 2021) and urban areas (Singh et al., 2022). Moreover, exposure to high levels 52 

of air pollution in childhood can carry long-lasting negative consequences well into 53 

adulthood (Isen and Walker, 2017).  54 

Control of air pollution has proven very challenging for developing countries. Air 55 

pollution is a multifaceted problem involving many actors, many economic sectors and 56 

even varying geographies as the source of air pollutants. Moreover, developing countries 57 

often seek to raise living standards through added manufacturing activity of highly 58 

 
1 Children are more sensitive than adults to air pollution because they have a faster breathing rate, 

a relatively immature respiratory system and overall lower immunity. Moreover, due to their 

young ages, children are more likely to suffer from cumulative cognitive impacts from air 

pollution exposure (Ke at al., 2022). 
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polluting industries, a view in which air pollution control is not seen as a priority. The 59 

problem is made worse by weak regulatory capacity. Recent policies that target the 60 

sources of air pollution in Delhi have shown some progress, but these have not achieved 61 

improvements at the magnitude and speed necessary to bring air pollution down near safe 62 

levels in the foreseeable future. In lieu of the magnitude of the problem and slow 63 

progress, individuals are often left with little options other than suffer from high levels 64 

of air pollution and/or to engage in private defensive investments (such as buying air 65 

purifiers), and personal adoption of exposure mitigation strategies (henceforth, 66 

‘behavioral strategies’).2,3 We discuss these strategies in turn. 67 

Air purifiers are a defensive technology that has proven effective at bringing down indoor 68 

air pollution and improving health (Cheek et al., 2021). The existing literature finds that 69 

High Efficiency Particulate Air (HEPA) purifiers reduced ultra fine particulate matter 70 

concentrations by 71 percent inside unoccupied school classrooms in Washington State, 71 

USA (Carmona et al., 2022)4, and reduced PM2.5 concentrations by 70 percent inside 72 

primary school classrooms in Hangzhou, China (Tong et al., 2020). Moreover, these 73 

HEPA air purifiers in school classrooms resulted in positive effects on a variety of 74 

children’s respiratory outcomes in China (Yang et al., 2021)5, but no effect on asthmatic 75 

children in schools in the northeast of the USA (Phipatanakul et al., 2021) where children 76 

are exposed to significantly lower levels of PM2.5 pollution.6 However, to the best of our 77 

knowledge, there is no experimental assessment of the potential for HEPA air purifiers 78 

to improve children’s educational outcomes in a very air polluted setting.  79 

 
2 Private defensive strategies can serve as both complementary measures as well as a stopgap 

until effective long-term public policies to reduce air pollution are drafted and enacted. 
3 Personal behavioral strategies include the following: wearing masks on days in which air 

pollution reaches critical levels; avoiding bursting firecrackers; avoiding exercising outside and 

staying indoors when outdoor pollution is high; avoiding spending time near those that smoke; 

avoiding sources of indoor air pollution at home, such as burning incense, oil candles ('diyas'); 

avoiding burning biomass indoors and clear fumes/smoke in kitchen area, etc. We will discuss 

these in further detail in the Interventions section. 
4 For a review of the literature on the effects of HEPA air purifiers in the USA, see Cheek et al. 

(2021). 
5 Regarding other health outcomes associated with reduced air pollution due to deployment of 

HEPA air purifiers, the existing literature finds positive effects in reducing blood cadmium of 

pregnant women in Mongolia (Barn et al., 2018), decrease in children’s visits to doctors in Ohio, 

USA (Lanphear et al., 2011), reductions in airway inflammation among college students in 

Shanghai, China (Chen at al., 2015), an improvement in airway mechanics of healthy young 

adults in Shanghai, China (Cui et al., 2018). 
6 Children in the USA study are exposed to average PM2.5 concentrations of 5.4 μg/m3, whereas 

children in the China study are exposed to average PM2.5 concentrations of 72 μg/m3. 
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On the other hand, adoption of behavioral strategies to mitigate exposure to air pollution 80 

has also been shown to be effective at mitigating the adverse effects of air pollution on 81 

health. For example, wearing face masks has been shown to reduce airway inflammation 82 

associated with particle air pollution (Guan et al., 2018), reduced decline of lung function 83 

(Shakya et al., 2016), and improved measures of blood pressure (Shi et al. 2017). 84 

Avoiding cooking with biomass and solid fuels and ventilating indoor cooking areas has 85 

been shown to improve lung function and reduce risk of chronic obstructive pulmonary 86 

disease (COPD) (Zhou et al., 2014). Staying indoors on high pollution days and limiting 87 

physical activity outdoors, or near sources of air pollution, has been shown to decrease 88 

markers of respiratory and systemic inflammation (Giles and Koehle, 2014; Madureira 89 

et al., 2019). For those that suffer from asthma, higher asthma control (with correct use 90 

of inhalers) has been shown to mitigate the adverse effects of PM2.5 pollution on lung 91 

capacity (Mirabelli et al., 2015).7 In terms of adoption of comprehensive behavioral 92 

strategies, Araban et al. (2017) find that an educational program can positively change 93 

behavior of pregnant women in Iran by modifying outdoor activity, particularly during 94 

episodes in which air quality alerts are issued.8 However, to the best of our knowledge, 95 

there is no experimental evaluation of the effects of a campaign involving a 96 

comprehensive package of behavioral strategies for mitigating the effect of air pollution 97 

exposure on students' health and educational outcomes. 98 

This work aims to fill the gaps in the literature by providing experimental evidence on 99 

the link between technological and behavioral strategies to mitigate air pollution 100 

exposure and its adverse effects on accumulation of human capital, broadly defined (i.e., 101 

maintaining good health, achieving a good education, and gaining productive skills) — 102 

a key factor in the pursuit of human and economic development. We believe that schools 103 

are an ideal setting for enhancing awareness of air pollution problems from an early stage 104 

through informational and educational campaigns. Students are used to a teaching and 105 

learning environment in school, and evidence shows that they can remember specific 106 

taught points when being taught about air pollution (Whitehouse and Grigg, 2021). 107 

 
7 For a thorough discussion of the evidence, from clinical trials, on behavioral strategies to 

mitigate the adverse effects of air pollution see Carlsten et al. (2020). Moreover, Laumbach and 

Cromar (2022) reviews the evidence for and against personal mitigation strategies and provide 

public health recommendations for the context of high-income countries, whereas WHO (2020) 

provides public health advice for low- and middle-income countries. 
8 The intervention was composed of three parts: a motivational workshop, a booklet and daily 

SMS text messages. See also Jasemzadeh et al. (2018). 
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Moreover, schools constitute a setting in which this sort of intervention could potentially 108 

be scaled up with only small changes in the teaching curriculum. On the other hand, 109 

although air purifiers have become relatively more affordable over recent years, there are 110 

still important financial constraints for households in developing countries to buy air 111 

purifiers for their homes. Moreover, as children spend a large fraction of their daily time 112 

at schools, air purifiers at home provide only a partial solution to mitigating exposure to 113 

indoor air pollution. Importantly, children are usually the least likely to be able to protect 114 

themselves from exposure to high air pollution. Children, and/or their caregivers, cannot 115 

privately engage in purchasing this technological defense for their school classrooms as 116 

only educational authorities can allow for and can carry out this sort of policies.  117 

Thus, in this work we experimentally assess the potential of both HEPA purifiers in 118 

classrooms and a comprehensive educational campaign of behavioral strategies – tailored 119 

to students’ environmental and sociocultural context – for mitigating the adverse effects 120 

of air pollution on children in Delhi’s schools, a setting of very high air pollution. We 121 

hypothesize that: [H1] HEPA purifiers in classrooms and adoption of behavioral 122 

strategies mitigate students’ exposure to high air pollution.9 Moreover, we hypothesize 123 

that [H2] these technological and behavioral strategies improve students’ respiratory 124 

health; and that [H3] these strategies and its associated improvements in respiratory 125 

health result in better educational outcomes. 126 

To test these hypotheses we will conduct a randomized controlled trial (RCT) to evaluate 127 

two interventions aimed at mitigating the adverse effects of air pollution in children. In 128 

the first intervention we deploy HEPA purifiers in randomly selected classrooms of 129 

schools in Delhi. In the second intervention we conduct an educational campaign among 130 

students of these schools designed to teach them about both the effect of air pollution on 131 

health and about behavioral strategies to mitigate the harmful effects of exposure, thus 132 

seeking to encourage adoption of these strategies. We evaluate these interventions by 133 

measuring effective exposure to particulate matter air pollution inside the classroom and 134 

self-reported adoption of personal mitigation strategies. Moreover, we evaluate health 135 

effects associated with reduced exposure to air pollution – by measuring students’ lung 136 

 
9 More specifically, we hypothesize that: HEPA purifiers decrease air pollution exposure while 

students are in the classroom; and that students learn and understand (i) the effects of air pollution 

in health, (ii) how to identify critical periods of air pollution (i.e., high Air Quality Index, AQI), 

and (iii) once taught, students change their behavior so as to adopt strategies that mitigate their 

personal exposure. 
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capacity and self-reported health – and evaluate educational outcomes — specifically, 137 

scores in standardized cognitive tests, school attendance and grades in final exams. 138 

Evidence from our pilots shows that HEPA air purifiers can effectively reduce indoor air 139 

pollution inside the classroom, and that this reduction is linked to an improvement in 140 

students’ school attendance (see Appendix A.1 below). 141 

This work makes three contributions to the broader literature of environment, health and 142 

education in developing economies. First, this work contributes to the literature on 143 

technology adoption for mitigating environmental hazards and improving health in 144 

developing countries. For example, the literature on the adoption of clean cookstoves 145 

(Pattanayak et al., 2019; Jeuland et al., 2020; Afridi et al., 2021; Berkouwer and Dean, 146 

2023) has found that improved cookstoves result in an important decrease in exposure to 147 

peak air pollution although finds no statistically significant decrease in average exposure 148 

to air pollution nor in health biomarkers (Berkouwer and Dean, 2023). In a closely related 149 

paper, Chowdhury et al. (2024) is examining the drivers of adoption of HEPA purifiers 150 

and its associated effects on health and labor outcomes at the household level (although 151 

results have not been reported yet). This work expands this literature by examining the 152 

potential of HEPA purifiers for mitigating the adverse effects of exposure to air pollution 153 

on childrens’ health in developing countries. 154 

Second, this work contributes to the broad literature on development economics that 155 

seeks to understand the barriers to adopting highly effective preventive behavior for 156 

mitigating the burden of multiple health health hazards and diseases faced by developing 157 

countries (Dupas, 2011). One possible explanation for this low adoption is a lack of 158 

information on the consequences of health hazards and diseases and the effectiveness and 159 

cost-effectiveness of preventative behaviors (Dupas, 2011). In this regard, our work 160 

expands the limited literature that evaluates the implementation of educational 161 

campaigns to incentivize better health care practices and thus improve human health.10 162 

Our work expands this literature by designing an educational campaign that not simply 163 

 
10 This literature supports that health-oriented information has incentivized safe water behaviors 

(Madajewicz et al., 2007; Luoto et al., 2014), promoted protection strategies against tropical 

diseases such as malaria and dengue (Dammert et al., 2014; Cohen and Saran, 2018), reduced the 

exposure to indoor pollution from cooking stoves - therefore the prevalence of respiratory health 

problems (Afridi et al., 2021), and encouraged HIV/AIDS testing behavior (Derksen et al., 2022; 

Yang et al., 2023; Yu, 2023) in developing countries. 
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delivers information but also teaches actionable behavioral strategies for encouraging 164 

adoption of preventive behavior among school children.  165 

Third, we assess whether these health-enhancing strategies could also positively affect 166 

educational outcomes. Current empirical evidence from public health campaigns aimed 167 

at eradicating persistent diseases in developing countries (e.g., malaria) shows mixed 168 

results in promoting educational attainment and literacy (Lucas, 2010; Cutler et al., 169 

2010). This literature also indicates that adopting health-enhancing technologies (e.g., 170 

water treatment, clean energy) that potentially reduce human pollution risk may raise 171 

educational attainments, not only through health improvements (Zhang and Xu, 2016) 172 

but also via a human capital investment mechanism (Choudhuri and Desai, 2021). Our 173 

work contributes to this literature by assessing an intervention that can potentially have 174 

tangible effects on educational outcomes and thus improve the process of human capital 175 

accumulation and its associated positive effects on long term economic and human 176 

development.  177 

The rest of this document is organized as follows. The next section presents the 178 

background and context of the problem of air pollution in Delhi and the schools where 179 

we will conduct the field work. Section 3 presents the research design where we state the 180 

hypotheses that will be examined, the methodological framework and conduct power 181 

analysis. Section 4 describes the data collection process and project timeline. Section 5 182 

presents the statistical models that will be employed to test the hypotheses and section 6 183 

states administrative project information. 184 

 185 

2. Background and Context 186 

 187 

Delhi is home to about 20 million people, with an additional few million if we account 188 

for surrounding satellite cities and towns. The air quality is very poor, with an average 189 

PM2.5 concentration of roughly around 120 micrograms per cubic meter (μg/m3) in 2018. 190 

The national air quality standard for India requires annual average PM2.5 concentrations 191 

not to exceed 40 μg/m3. Delhi has been in violation of these standards for at least the past 192 

two decades. Air pollution in Delhi is also highly seasonal. Colder months typically see 193 

worse levels of air quality while the Monsoon (late summer) period is the cleanest. Figure 194 

1 below illustrates this. This figure uses data for the year 2018 from ambient air quality 195 
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monitors maintained by India’s Central Pollution Control Board. The horizontal red line 196 

shows India’s standard for annual average PM2.5. Delhi’s air quality typically tends to be 197 

in compliance with the annual standard only during July, August and September. In the 198 

winter months of November to January, in particular, the quality of the air deteriorates to 199 

very high levels.11  200 

 201 

 202 

Figure 1: Monthly averages of PM2.5 for the year of 2018 for Delhi, data taken from all active air 203 

quality monitors maintained by the Central Pollution Control Board 204 

 205 

Since 2017 Delhi, and the surrounding satellite towns and cities that make up the National 206 

Capital Region (NCR), has instituted a comprehensive policy to bring air pollution down. 207 

This policy, called the Graded Response Action Plan (GRAP), consists of four stages. 208 

Stage I is put in place when the predicted air quality exceeds a certain cut-off. Subsequent 209 

stages - Stages II, III and IV - are invoked when air quality is predicted to exceed 210 

progressively higher cut-offs. Relevant to our interventions, Stage IV of the GRAP 211 

requires schools to be shut down when air quality is predicted to be particularly bad. For 212 

instance, in 2023, in Delhi primary schools were shut down from November 6th to 213 

November 18th, while schools at all levels were shut down from November 8th onwards.12 214 

 
11 This is due to several factors: the primary factor being the lower temperatures and the resulting 

temperature inversions that limit the ventilation of the airshed.  In addition to this, other reasons 

can be smoke that comes from the widespread stubble burning that takes place in states 

northeast/upwind from Delhi (Punjab and Haryana) during November. 
12 School closures by themselves are however unlikely to be particularly useful in protecting 

children from air pollution. First, the decision to close schools is typically taken after air quality 

has already reached hazardous levels. Second, children are likely exposed to the same poor-

quality air when they are at home. Closing schools may prevent some minor additional exposure 

during commutes, but this is unlikely to be very large. Moreover, the loss of school days that 
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Therefore, if HEPA purifiers in classrooms turn effective at reducing air pollution in 215 

classrooms and improving students’ health and educational outcomes, Stage IV of the 216 

GRAP policy may no longer be necessary. Instead, a policy that invests and deploys this 217 

sort of air purifiers can then allow for keeping children attending and learning at school 218 

even during episodes of very high air pollution. 219 

Our choice of school partner is the Delhi branch of the Kendriya Vidyalaya (KV) schools, 220 

which translates to Central Government Schools in English. India’s KV schools are a 221 

nationwide system of public schools that cover all grades (called “standards'' in India), 222 

from primary all the way to school completion.13 These schools offer the same syllabus 223 

across the board and a highly standardized system of education. The major advantage of 224 

working with KV schools is that they offer very promising scope to examine how the 225 

interventions we examine could potentially be expanded on a national scale. Scaling up 226 

is important because air quality in most parts of India – particularly the northern plains 227 

region, where hundreds of millions of people live – is extremely poor, just as bad as it is 228 

in Delhi.14  Therefore, if the behavioral strategies evaluated in this work turn effective, 229 

then a small change in the teaching curriculum can go a long way in mitigating the 230 

harmful effects of air pollution exposure throughout a vast number of geographical areas 231 

in India and other regions of the world suffering from very high air pollution. 232 

 233 

3. Research Design 234 

 235 

a. Objectives and Main Hypothesis 236 

 237 

The main objective of this work is to experimentally assess technological (i.e., HEPA air 238 

purifiers) and behavioral strategies for mitigating children’s exposure to air pollution, the 239 

positive health effects associated with mitigated exposure, and whether this results in 240 

 

result from these school closures can hamper children’s learning, and the cumulative effect of 

this reduction in school days is likely to show up as fewer lessons are effectively learned. 
13 These schools were initially set up to serve children of parents who work in jobs that require 

significant long term stays in different parts of the country, such as in the armed forces or in 

government. In order that their children’s education does not suffer. 
14 The national scale of the problem is illustrated in Figure A.1 in Appendix A. 
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improved educational outcomes. We hypothesize that these strategies can result in 241 

tangible benefits for students in Delhi schools exposed to high levels of air pollution.  242 

 243 

b. Main outcomes of Interest 244 

 245 

We first examine the effect of air purifiers on indoor particle air pollution. To measure 246 

this we will deploy indoor pollution monitors that will log real-time readings of fine and 247 

coarse particulate matter pollution (PM2.5 and PM10). These monitors will be deployed in 248 

both classrooms with HEPA purifiers and control classrooms. Moreover, by means of a 249 

survey questionnaire, we assess students’ understanding and learning of key components 250 

of the educational and behavioral intervention. Specifically, we assess understanding and 251 

learning of (i) the effects of air pollution on health, (ii) identification of periods of high 252 

air pollution (specifically, high Air Quality Index), and (iii) personal strategies to mitigate 253 

exposure to high air pollution. In addition, the survey questionnaire will allow us to gauge 254 

whether students have actually engaged in any of these behavioral strategies.  255 

Next, we examine whether these technological and behavioral mitigation strategies result 256 

in improved health by measuring students’ lung capacity using spirometry.15 In 257 

particular, we will measure a students’ Forced Expiratory Volume over 1 second (FEV1) 258 

and Peak Expiratory Flow (PEF).16 We complement this assessment with survey 259 

questions on self-reported health, focusing on those health symptoms that are more 260 

closely associated with exposure to high air pollution.  261 

Finally, we measure students’ educational outcomes in three ways. We obtain data on 262 

individual-level school attendance from schools’ official registry, we perform 263 

standardized learning and cognitive tests throughout the school year,17 and we assess 264 

 
15 Spirometry is a tool to assess and monitor prevalence and risk of chronic respiratory diseases, 

such as Asthma and Chronic Obstructive Pulmonary Disease COPD (Agusti et al., 2021), that 

allows to identify health effects even from modest variations in short-term exposure to PM2.5 air 

pollution (Rice et al. 2013). 
16 Dong et al. (2019) show that portable ionization air purifiers in school classrooms, even for a 

short period of time (5 days), increase FEV1 among children 12 years old in Beijing, China, 

whereas Weichenthal et al. (2013) show similar effects among indigenous populations in 

Manitoba, Canada. 
17 For assessing learning of math and language, we employ the Young Lives School Survey 

(YLS). Whereas for cognitive assessment we employ the Reverse Corsi Block task to measure 

working memory (Brunetti et al., 2014). This test has been shown to be sensitive even to modest 

changes in average air pollution exposure (Berkower and Dean, 2023).   
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students' grades throughout the year and in their final exams. The survey questionnaire, 265 

spirometry sampling, questions on self-reported health and standardized cognitive tests 266 

will all be conducted several times during the data collection.  267 

 268 

c. Testable Hypotheses 269 

 270 

We hypothesize that  271 

Hypothesis 1: Technological and behavioral strategies mitigate students’ exposure to 272 

high air pollution 273 

From this, we have two auxiliary hypotheses.  274 

Hypothesis 1.1: Air purifiers mitigate air pollution exposure while students are 275 

in the classroom.  276 

and a twofold Hypothesis 1.2 277 

Hypothesis 1.2.a: Students can understand and learn the following: (i) the effects 278 

of air pollution in health, (ii) how to identify critical periods of air pollution (i.e., 279 

high Air Quality Index, AQI), and (iii) personal behavioral strategies to mitigate 280 

exposure.  281 

Hypothesis 1.2.b: Once (i) through (iii) above are taught and learned, students 282 

change their behavior to adopt strategies that mitigate their personal exposure 283 

to air pollution.  284 

Next, we evaluate whether these strategies can reduce the harmful effects of exposure to 285 

high levels of air pollution by posing the following hypothesis. 286 

Hypothesis 2: Technological and behavioral strategies (i.e., HEPA Purifiers in 287 

classrooms and personal behavioral strategies) improve students’ respiratory health.  288 

Finally, our last hypothesis is whether improvements in student’s respiratory health leads 289 

to better educational outcomes. Thus, our third hypothesis is 290 

Hypothesis 3: Technological and behavioral strategies, and their associated 291 

improvements in respiratory health, result in better educational outcomes. 292 
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Table 1 below summarizes the main outcome variables in relation to how they allow us 293 

to test our hypotheses. 294 

 295 

Table 1: Hypotheses and Outcome Variables 296 

Hypothesis Outcome Variable Unit of Obs. Type Data Source 

 

H1: Exposure 

    

H1.1 Particle Pollution 

(PM2.5) 

μg/m3 in 

classroom x 

20-minutes 

Continuous Indoor pollution 

monitors 

H1.2.a Learning of Behavioral 

Strategies 

Student x 

Round 

Index Survey questionnaire 

H1.2.b Adoption Behavioral 

Strategies 

Student x 

Round 

Index Survey questionnaire 

 

H2: Health 

    

H2.1 Lung capacity (FEV1 & 

PEF) 

Student x 

Round 

Continuous Spirometry 

H2.2 Self-Reported Health Student x 

Round 

Index Survey questionnaire 

 

H3: 

Education 

    

 Attendance Student x Day Count Official School 

Registries 

 Standardized test scores Student x 

Round 

Continuous Survey Standardized 

Test 

 Grades Student x Year Grading 

System 

Official School 

Registries 

 297 

 298 

 299 

 300 

 301 
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d. Methodological Framework 302 

 303 

We will conduct a cluster-randomized controlled trial where we will randomly assign 304 

clusters of students sharing the same classroom (a.k.a. a class) into one of three groups: 305 

those assigned to treatment Purifiers, those assigned to treatment Educational & 306 

Behavioral Strategies (EBS) and a Control group. That is, we will randomly assign all 307 

students in the same class to only one of these treatment arms, without overlap. This 308 

random assignment will be conducted in early October 2024 by members of the research 309 

team in a clear and transparent way. Next, we explain these three groups and the 310 

treatments in detail. 311 

  312 

i. Treatments 313 

 314 

Treatment Purifiers: HEPA purifiers in classrooms 315 

 316 

The first treatment consists of deploying high-capacity HEPA purifiers inside randomly 317 

selected school classrooms. These HEPA purifiers contain a filter that filters up to 99.99 318 

percent of particles of size 0.1 microns (PM0.1) or larger. These air purifiers have a 319 

manufactured-stated clean air delivery rate (CADR) of 600 cubic meters per hour (21,189 320 

cubic feet per hour) and are suitable for rooms of an area of up to 60 square meters (645 321 

square feet). This intervention is further accompanied by simple information and 322 

education seeking to enhance the performance of the HEPA purifiers. Specifically, 323 

students and teachers will be asked to keep doors and windows shut during the time the 324 

purifier is running inside the classroom. These purifiers will be running during teaching 325 

hours and will be turned on/off by the class teacher. The field team will be in constant 326 

communication with school principals to monitor that these purifiers perform 327 

continuously during the data collection period, and any malfunctioning is promptly fixed 328 

and logged. All air purifiers will be deployed and installed in mid-October 2024, during 329 

the Autumn school break (October 8th to 17th, 2024).   330 

To assess the reduction of indoor air pollution by these purifiers we will deploy indoor 331 

air pollution monitors inside classrooms in both those classrooms assigned to treatment 332 
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Purifier and those in the control group.18 These devices measure fine and coarse particle 333 

air pollution (PM2.5 and PM10) concentrations and record this data internally on an SD 334 

card every 20 minutes. The field team will continuously monitor these devices, download 335 

the data stored in their SD cards to a laptop computer and then upload this data to a 336 

secured storage drive. 337 

 338 

Treatment EBS: Education and Behavioral Strategies 339 

 340 

The second treatment consists of an educational campaign that will have three 341 

components. Component 1 teaches students about the problem of air pollution in their 342 

city and how it impacts their own health. Component 2 teaches students that exposure to 343 

higher levels of air pollution is associated with higher risks of health hazards.19 Finally, 344 

component 3 of this campaign teaches personal strategies to mitigate air pollution 345 

exposure and associated health risks. We will seek to deliver this teaching in a positive 346 

way that seeks to bring a sense of self-empowerment to students to ‘fight against’ the 347 

adverse effects of air pollution in their city. We refer to this educational and behavioral 348 

strategies treatment as treatment EBS. As before, assignment to this treatment will be in 349 

clusters, such that if a class is assigned to this treatment then all students in the same class 350 

will be assigned to receiving this treatment 351 

For this intervention we will produce educational material that has educational content 352 

tailored specifically to this intervention. This includes leaflets (which will be handed out 353 

to students), posters (which will be hung inside the classroom’s wall) and a short video 354 

(which will be shown to students in the computer lab, when they respond to the survey 355 

questionnaire). This educational material has simple language and is accompanied with 356 

visuals for communicating the contents in a way that is easily understandable by these 357 

 
18 These indoor air pollution monitors will also be deployed in ‘pure control’ classrooms. 
19 When referring to these health risks we will follow the health risks categories by the Air Quality 

Index (AQI) of India’s Central Pollution Control Board. Under these categories  ‘Good’ air 

quality (i.e., AQI between 0 and 50) is associated with “Minimal impacts” on health; 

‘Satisfactory’ (AQI between 51 and 100) is associated with “Minor breathing discomfort to 

sensitive people”; ‘Moderate’ (AQI between 101 and 200) is associated with “Breathing 

discomfort to the people with lungs, asthma and heart diseases”; ‘Poor’ (AQI between 201 and 

300) is associated with “Breathing discomfort to most people on prolonged exposure”; Very Poor 

(AQI between 301 and 400) is associated with "Respiratory illness on prolonged exposure", and 

‘Severe’ (AQI between 401 and 500) is associated with “Affects healthy people and seriously 

impacts those with existing diseases”.  See https://airquality.cpcb.gov.in/AQI_India/. 
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students. Next, we describe in further detail the content of each of the three components 358 

of this treatment. 359 

 360 

Component 1: Effects of air pollution on health 361 

For explaining the effects of air pollution on health we have produced a draft of this 362 

educational content (see Appendix C.1 below). In addition, based on this content we will 363 

produce a short video that will be similar to this video  from the United Nations Children's 364 

Fund (UNICEF, 2016)  and the ‘Freedom to Breathe’ campaign for India.20  365 

 366 

Component 2: Identification of critical levels of air pollution by means of checking the 367 

AQI 368 

Another important component of this intervention is to create awareness about the current 369 

level of ambient air pollutants, at any given period of time, by explaining the Air Quality 370 

Index (AQI) and getting students (and/or getting them to ask their caregivers) to check 371 

the AQI on a regular basis (see Appendix C.2). This component seeks to aid students in 372 

identifying when air pollution has reached critical levels, and it is indeed the first 373 

behavioral strategy for mitigating exposure to high ambient air pollution. 374 

 375 

Component 3: Personal strategies to mitigate exposure and its effects on health 376 

The personal strategies to mitigate the adverse effects of air pollution on health include: 377 

(a) avoiding physical activity, exercising and (to the extent possible) spending much time 378 

outdoors when AQI is high or very high; (b) closing of doors and windows when AQI is 379 

high and the indoor environment is clear of air pollution; (c) running an air purifier if it 380 

 
20 This video explains – for an Indian context – the problem of air pollution on health and a few 

personal strategies for mitigating exposure. The `Freedom to Breathe' campaign provided an 

opportunity for children to call for their right to clean air to be acknowledged by the United 

Nations Convention on the Rights of the Child (UNCRC). The campaign worked with partners 

across the world to deliver a curriculum-linked education program that helped young people 

understand the state of air quality in their cities, the health harms of poor air quality, and simple 

measures they could take at home and in school to protect themselves from breathing harmful 

pollutants. The campaign was run globally by Blueair -- a Swedish subsidiary of the Unilever 

company that manufactures air purifiers -- in partnership with Global Action Plan, Association 

for the Promotion of Youth Leadership Advocacy and Volunteerism Cameroon (APYLAV), 

Centre for Environment Education, Coalition for Clean Air, and Safekids Worldwide. 

https://www.blueair.com/us/freedomtobreathe.html 

https://www.youtube.com/watch?v=vhSV31IGhLc&ab_channel=UNICEF
https://www.blueair.com/us/freedomtobreathe.html
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is available at home; (d) avoiding spending time near people that smoke; (e) asking 381 

parents to avoid burning incense and oil candles indoors, (f) asking parents to avoid 382 

burning biomass (such as wood fuel, charcoal or dung) for cooking or heating indoors, 383 

(g) avoiding busy roads when going to school, (h) avoiding bursting firecrackers (which 384 

is widespread during the Diwali festivities) and/or spending time near where this 385 

happens; (i) considering wearing an N95-type face mask when AQI is very or extremely 386 

high; (j) paying attention to own health and seek care early on if symptoms arise; (k) 387 

using inhaler more often if the student suffers from asthma. The figures in Appendix C.3 388 

below illustrate some of these strategies. 389 

  390 

ii. Possible Violations of SUTVA, Spillovers and Confounders 391 

 392 

We take several provisions to prevent ‘contamination’ of treatments across subjects, or, 393 

more technically, violations of the Stable Unit Treatment Value Assumption (SUTVA). 394 

First, SUTVA may be violated if students in treatment EBS share information from the 395 

educational campaign with students in either treatment Purifier or in the Control group. 396 

This problem is more likely to occur within the same school than across different schools. 397 

To address this potential problem, we will conduct a multi-stage assignment. More 398 

specifically, in the first stage we will select schools that will serve as ‘control-only’ 399 

schools, and in the second stage we will conduct the random assignment of clusters of 400 

students into treatments and control groups. For classes and classrooms in ‘control-only’ 401 

schools we will conduct the same surveys and will deploy the same indoor air pollution 402 

monitors. We believe that, if there is any spillover effect between students in treatment(s) 403 

and control groups, we expect that this spillover will occur between classes within the 404 

same school, but it will not occur across classes from different schools. Therefore, having 405 

classes in ‘control-only’ schools would allow us to assess whether those students in 406 

classes that have been randomly assigned to the Control group effectively remain free of 407 

any possible spillover from those students in classes randomly assigned to any of the 408 

treatment groups. If spillovers exist, then observing those students in classes in ‘control-409 

only’ schools would allow us to identify that spillover and properly account for it in our 410 

statistical analysis.  411 
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Second, SUTVA may be violated if classrooms in treatment Purifier have students 412 

switching in and out of this classroom during the time of the field experiment. For 413 

example, it might be that, due to the novelty of having an air purifier in the classroom, 414 

students from classes selected for treatment EBS or Control group may want to spend 415 

time inside classrooms assigned to treatment Purifier. To minimize this possibility, we 416 

will make it explicit to teachers and educators to enforce that only students in the 417 

treatment Purifier classes should be allowed in those classrooms. We will ask them to 418 

inform us if this is not feasible to enforce and we will keep a log of instances in which 419 

students swap classrooms.  420 

In addition, we anticipate that these treatments may generate spillover effects beyond the 421 

intended assignment to treatment. In particular, there could be non-behavioral changes 422 

in exposure to air pollution that are triggered by assignment to the treatment EBS. For 423 

example, parents of children assigned to treatment EBS may decide to buy an air purifier 424 

for their home if they hear from their child’s increased awareness about the problem of 425 

air pollution – say, they hear their child advocating and pushing for household members 426 

to engage in behavioral strategies to mitigate exposure at home. While we do not 427 

anticipate being able to prevent this from happening, we will ask students both at baseline 428 

and follow up surveys about the presence of air purifiers at home, so that we can properly 429 

account for this sort of changes in air pollution exposure mitigation in our statistical 430 

analysis. Likewise, there could be behavioral changes – triggered by assignment to 431 

treatment Purifier – in such a way that affects students’ exposure to air pollution. For 432 

example, students may feel that, because they are ‘protected from air pollution’ while in 433 

the classroom, then they do not need to be protected themselves from pollution at other 434 

instances – thus, they may engage in lesser pollution exposure mitigation behavior than 435 

otherwise. Conversely, the presence of the air purifier in the classroom may work as a 436 

salient reminder of the problem of air pollution, in such a way that students change their 437 

behavior by attempting to reduce exposure, also while outside the classroom. That is, 438 

those students in classrooms assigned to treatment Purifier may feel more interested 439 

and/or engaged in taking additional measures to reduce exposure, such as engaging in 440 

some of the personal exposure mitigation behaviors listed above (for example, wearing 441 

face masks). To address these issues, we will include questions in the survey 442 

questionnaire about behavioral strategies to mitigate exposure both at baseline and at 443 

follow-ups, and we will properly account for these in our econometric analysis. Similarly, 444 

if the child is in a classroom assigned to treatment Purifier, and his/her parents believe 445 
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that the child will be protected from air pollution while in the school classroom, then the 446 

child’s parents may decide to send the student to school more often than otherwise. Due 447 

to this reason, we can expect a direct increase in students' attendance rate in classrooms 448 

assigned to treatment Purifier that is not directly linked to improvements in the child’s 449 

health. To address this issue, in our empirical strategy we implement an instrumental 450 

variable regression approach (see section 5 below). 451 

 452 

Finally, a potential confounder effect can occur as schools close due to a government 453 

mandate as air pollution reaches very high peaks (Stage IV of GRAP policy response, as 454 

discussed in section 2 above). But as schools in the control and the treatment group are 455 

impacted similarly by closures, we expect a similar exposure outside the classroom 456 

premises. However, we will keep track of the occurrence of school closures for any 457 

reason.  458 

 459 

iii. Sample and statistical power 460 

 461 

We are planning to conduct this experiment in 126 classrooms across 10 schools in 462 

Delhi’s KV schools. Of these classrooms, 54 have two shifts of classes a day (morning 463 

and afternoon), making for a total of 180 classes. Moreover, each class has an average of 464 

50 students, which makes for a total of around 9,000 students. However, of these 10 465 

schools we will select 2 schools to serve as ‘control-only’, leaving us with 8 schools and 466 

between 144 and 150 classes that will be eligible for random assignment to the treatments 467 

and control.21 For simplicity, we will refer to working with a sample of around 147 468 

classes. As the treatments will be assigned at the class level, this will allow for a split of 469 

roughly 49 classes in each of the three treatment arms (the two treatments and the control 470 

group).  471 

Our sample of classes comprises students in 6th, 7th and 8th grade. Thereby, we will 472 

conduct a stratified random assignment at the school grade level (Athey and Imbens, 473 

2017). The rationale for this stratified random assignment is as follows. One of the 474 

 
21 The exact number will depend on the actual 2 schools that we select out for the ‘control-only’ 

group 
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important factors likely driving many of our primary outcomes is the student's age and 475 

their associated school grade and cognitive/learning capacity. An older student should 476 

have a more resilient health system that can better withstand adverse environmental 477 

conditions, such as exposure to high levels of air pollution. Thereby, the effects of 478 

mitigating exposure to air pollution on respiratory health (and thus, educational 479 

outcomes) may be less pronounced among older students than among younger students. 480 

Moreover, older students should be better equipped to grasp the content of an educational 481 

campaign aimed at reducing personal exposure, they have more agency on determining 482 

their actual behavior, and thus could possibly mitigate their exposure to air pollution to 483 

a greater extent than younger students. Furthermore, older students should be able to 484 

perform better in cognitive and learning tests than younger students. For these reasons, 485 

we believe that we should have a balanced sample of students in 6th, 7th and 8th grade 486 

assigned to each of the treatments and to the control group. Therefore, conducting a 487 

stratified random assignment at the school grade level will guarantee that the treatments 488 

and control groups are balanced for each school grade. That is, for a given school grade, 489 

there will be (roughly) as many classrooms in treatment Purifier as in treatment EBS as 490 

in Control groups.22  491 

 492 

Next, we present our power analysis for the Minimum Detectable Effect (MDE) 493 

assuming statistical significance of 5 percent and 80 percent of statistical power. We 494 

present this analysis at the classroom/class level as well as at the student level, depending 495 

on the unit of measurement of the outcome variable. Table 2 below summarizes the 496 

power analysis. 497 

 498 

Classroom/class level outcomes (Panel A of Table 2) 499 

 500 

Particle Pollution (PM2.5) inside classrooms. This analysis relies on our pilot with seven 501 

air purifiers in an equal number of classrooms conducted in August through December 502 

2022. The average PM2.5 pollution inside the classrooms is 133.16 μg/m3 and the standard 503 

 
22 In our case there will be roughly 14 classrooms, per school grade, assigned to each group. 

Moreover, when conducting the regression analysis we will not control for the strata of 

randomization (i.e., we will not control for school grade), although we will control for all the 

dimensions of fixed-effects as well as their interactions (Athey and Imbens, 2017). 
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deviation is 148.17. Therefore, under equal assignment of classrooms/classes between 504 

treatment and control groups this yields a MDE equal to a 84.72 μg/m3 reduction in PM2.5. 505 

On the other hand, the average reduction in PM2.5 pollution inside classrooms that we 506 

observed in our pilot is 101.2 μg/m3. 507 

 508 

School attendance. This analysis relies on the absenteeism rate reported by (Singh, 2022) 509 

for schools in Delhi. Singh (2022) reports an average absenteeism rate of 26.24 for 6th 510 

to 8th graders in Delhi schools and a standard deviation of 1.4. Therefore, assuming equal 511 

assignment of classes into treatment and control groups, this yields a MDE equal to 0.8 512 

reduction in absenteeism rate. On the other hand, the estimated reduction in absenteeism 513 

rate we find in our pilot with air purifiers is 6 percentage points. 514 

 515 

Student level outcomes, clustered at the class/classroom level (Panel B of Table 2)  516 

 517 

Learning Behavioral Strategies. Not currently available (N/A). 518 

 519 

Adoption of behavioral strategies. Although we did not conduct a pilot for the 520 

educational and behavioral intervention, we rely on Araban et al. (2017) for a feasible 521 

mean and standard deviation of an index of behavioral strategy adoption. In addition, for 522 

the class-level intra-cluster correlation (ICC) we rely on estimates from the ‘Balsakhi’ 523 

program of remedial education for schools in urban India (Banerjee et al., 2007). Thus, 524 

we assume a mean adoption index of 11.2 (for an index that goes from 5 to 20), an 525 

associated standard deviation of 2.3, and an ICC of 0.1356. Under equal assignment of 526 

class-level clusters of students among treatments/control groups, this yields a MDE equal 527 

to 0.51. On the other hand, Araban et al. (2017) finds an effect of 8.8 for that same index. 528 

 529 

Respiratory health – Lung capacity. We rely on parameters and estimates from Foster 530 

and Kumar (2011) for an index of lung capacity (as measured by spirometry) for children 531 

less than 17 years old in Delhi. The mean index reported by Foster and Kumar (2011) is 532 

70.44 and its associated standard deviation is 15.35. Moreover, we assume the same ICC 533 

as before. This yields an MDE equal to 3.4 for an equal assignment of class clusters into 534 
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treatment/control groups. On the other hand, we expect to find a reduction of 12.32 points 535 

in such an index from the air purifier intervention. This expected reduction comes from 536 

multiplying the estimated effect of 1.023 (per 1-μg/m3 of change in PM2.5) found by 537 

Foster and Kumar (2011) by a reduction of 12.04 μg/m3 in average PM2.5 exposure.23 538 

 539 

Respiratory health – Self reported symptoms.  We rely on parameters and estimates from 540 

Berkouwer and Dean (2023) for both a (zero-mean standardized) index and a count of 541 

self-reported respiratory health symptoms. Assuming the same ICC and balance split 542 

between treatment and control as before this yields a MDE of 0.22, whereas the effect 543 

found in Berkouwer and Dean (2024) is 0.24 for a 0.8 μg/m3 reduction in average PM2.5 544 

exposure. Similarly, the count of respiratory symptoms has a mean of 1.7 and a standard 545 

deviation of 1.76, thus yielding a MDE of 0.39, which contrasts to the effect found in 546 

Berkouwer and Dean (2024) of 0.48.24 As mentioned above, we expect to find a 547 

considerably larger reduction in average PM2.5 exposure than the one in Berkouwer and 548 

Dean (2024). 549 

 550 

Cognitive/learning assessment. We rely on parameters and estimates for a (zero-mean 551 

standardized) index of cognitive memory (Corsi test) from Berkouwer and Dean (2024). 552 

Assuming the same ICC and balance split of treatments/control as before, we obtain a 553 

MDE equal to 0.22. This contrasts with the effect of 0.48 for this index25 for 0.8 μg/m3 554 

reduction in average PM2.5 exposure – a considerably smaller reduction than the one we 555 

expect for our treatment. 556 

 557 

Cognitive assessment – Peabody Picture Vocabulary and Math Test 558 

We rely on parameters and estimates from Balakrishnan and Tsaneva (2021) for a (zero-559 

mean standardized) index of the Peabody Picture Vocabulary Test from the India Chapter 560 

of the Young Lives Survey. Balakrishnan and Tsaneva (2021) find an effect of 0.18 and 561 

 
23 This 12.04 μg/m3 reduction in average exposure to PM2.5 is the result of a 101.2 μg/m3 

reduction (from the air purifier) for a period of 4 hours a day spent inside the classroom over 5 

days a week. 
24 For the effect of the index and count of respiratory symptoms see Table B.13 in Berkouwer 

and Dean (2024). 
25 See Table B.15 in Berkouwer and Dean (2024). 
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.55 for boys and girls, respectively, from a 1-μg/m3 change in the annual mean of PM2.5.
26 562 

On the other hand, assuming the same ICC and balance split of treatments/control as 563 

before, we obtain a MDE equal to 0.22.  564 

 565 

Grade in Final Exams. Not currently available (N/A). 566 

 567 

Table 2: Power Analysis – Input Parameters, Minimum Detectable Effect and Effect Size. 568 

Outcome Variable Mean S. D. ICC MDE Estimated 

Effect 

Source 

Panel A. Class level       

Indoor PM2.5 pollution 

(μg/m3) 

133.2 148.2 - 84.72 101.2 Pilot 

Absenteeism rate (%) 26.24 1.4 - 0.8 6 Pilot, Singh (2022). 

       

Panel B. Student level       

Learning behavioral 

strategies  

N/A N/A N/A N/A N/A  

Adoption of behavioral 

strategies (index) 

11.2 2.3 0.136 0.51 8.8 Araban et al. (2017), 

Banerjee et al., 

(2007). 

Respiratory health effects 

(index of lung capacity) 

70.44 15.35 0.136 3.4 12.32 Foster and Kumar 

(2011), Pilot. 

Respiratory health symptoms 

(index) 

0 1 0.136 0.22 0.24 Berkouwer and 

Dean (2023), Pilot. 

Respiratory health symptoms 

(count) 

1.7 1.76 0.136 0.39 0.48 Berkouwer and 

Dean (2023), Pilot. 

Cognitive Test, Corsi 

working memory (index) 

0 1 0.136 0.22 0.48 Berkouwer and 

Dean (2023), Pilot. 

Cognitive assessment, 

Peabody Picture Test (index) 

0 1 0.136 0.22 0.18 (Boys) 

0.55 (Girls) 

Balakrishnan and 

Tsaneva (2021) 

Final Exams N/A N/A N/A N/A N/A  

  569 

 
26 We expect to find an effect in the annual mean of PM2.5 from our interventions in the order of 
two to three times as large as that in Balakrishnan and Tsaneva (2021). 
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4. Data 570 

 571 

a. Data collection and processing 572 

As stated above, we collaborate with Kendriya Vidyalaya (KV) schools in Delhi. To 573 

collect student-level data we will use a combination of survey instruments (both 574 

questionnaires and a low-cost medical device for spirometry) and administrative data on 575 

attendance and grades in final exams. The survey instruments would be executed with 576 

the help of a survey team with prior experience and training for collecting data from 577 

school students. Moreover, we will deploy air pollution monitors inside classrooms to 578 

assess exposure to indoor PM air pollution while in the classroom. 579 

The survey questionnaire is divided into multiple sections. Section 1 starts with questions 580 

about simple socioeconomic indicators and questions about self-reported respiratory 581 

health symptoms experienced over a recent period of time. Then it moves onto questions 582 

about air pollution. These include questions about knowledge and understanding of the 583 

problem of air pollution, questions about capacity to identify periods of time with high 584 

air pollution (by means of the Air Quality Index, AQI), and questions about knowledge 585 

and practice of behavioral strategies to mitigate exposure to high air pollution. Sections 586 

2 and 3 have questions for assessing learning of language and math (this is borrowed 587 

from the India chapter of the Young Lives survey).27 Finally, section 4 has questions on a 588 

memory test consisting of connecting visual shapes (Corsi memory test). A working draft 589 

of the questionnaires is attached in Appendix B. 590 

For collecting spirometry data on a student's lung capacity we will be using a low cost 591 

portable spirometer from Medical International Research company.28 Spirometer tests 592 

will be administered individually to each student by well-trained enumerators.  593 

For collecting data on indoor PM pollution we will be using a low-cost monitor 594 

manufactured by Purelogic Labs India, an air quality company based in Delhi, India.29 595 

 
27 The questionnaires are borrowed from the India chapter of the Young Lives School survey 

https://www.younglives.org.uk/india-school-survey. 
28 Specifically, we will be using Medical International Research’s Spirobank II Smart 

https://www.spirometry.com/en/products/spirobank-ii-smart/. 
29 Specifically, we will deploy procure and deploy Purelogic Labs’ Prana Air Smart Indoor PM 

Monitor (https://www.pranaair.com/air-quality-monitor/smart-indoor-pm-monitor/). 

https://www.younglives.org.uk/india-school-survey
https://www.spirometry.com/en/products/spirobank-ii-smart/
https://www.pranaair.com/air-quality-monitor/smart-indoor-pm-monitor/
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This monitor records PM2.5 and PM10 every 20 minutes and records this data in its built-596 

in SD card.  597 

 598 

b. Timeline and implementation 599 

 600 

We will conduct the intervention during the last quarter of 2024 (October through 601 

December 2024). As shown in Figure 1 above, this is the period of time in which PM 602 

pollution in Delhi peaks up and reaches its highest levels.30 The deployment of the PM 603 

pollution monitors in KV School classrooms will begin earlier, in the summer of 2024 604 

(thus, allowing for pre-treatment data collection). The main data collection, however, 605 

will be carried out in October and December of 2024. The baseline data survey and 606 

spirometry tests will be conducted on October 7th through 11th. During this time, we will 607 

also conduct the Educational and Behavioral Strategies treatment in randomly selected 608 

school classes. During the Autumn break, on October 8th through 17th, we will deploy the 609 

HEPA purifiers in randomly selected classrooms, and these will be running throughout 610 

the Autumn teaching term. In addition, there will be an endline survey and spirometry 611 

tests before the Christmas break (on December 17th to 13th).31 Finally, there will be a 612 

follow-up data collection in which we will obtain administrative data on students’ 613 

attendance and grades in final examinations. Figure 2 below shows a visual timeline of 614 

events. 615 

 616 

 
30 The reason for termination in December 2024 is to meet the expenditure schedule required by 

the current funding organizations. However, depending on the availability of funds, we may 

extend the intervention and data collection into early 2025 and we may conduct an additional 

round of surveys around February 2025. 
31 This could eventually be relabeled as a ‘midline survey’ in case we could extend the data 

collection into early 2025. 
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 617 

Figure 2: Project Timeline 618 

 619 

5. Statistical Analysis 620 

 621 

In this work we aim to assess whether technological and behavioral strategies to mitigate 622 

effects of high air pollution can result in improved health and better educational outcomes 623 

for students in heavily air polluted cities. To that end, here we outline an empirical 624 

strategy to first estimate the effects of these strategies on mitigating pollution exposure. 625 

Specifically, we want to empirically test the following hypotheses. 626 

 627 

Hypothesis H1.1: Air purifiers Reduce air pollution while students are in the classroom. 628 

Our empirical strategy consists of estimating the following equation. 629 

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑠𝑡 = 𝛼 + 𝛽𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑟𝑐𝑠𝑡 + 𝜆𝑐𝑠 + 𝛤𝑡 + 𝜖𝑐𝑠𝑡  (1) 

Where 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑡 denotes particle pollution (say, fine particulate matter, PM2.5) in 630 

classroom 𝑐 in school 𝑠 in period 𝑡. 𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑟𝑐𝑠𝑡 is a dummy equal to one if the classroom 631 

has been randomly assigned a purifier and zero otherwise. We control for school-632 

classroom-specific fixed effect 𝜆𝑐𝑠, which may capture factors such as: different levels 633 

of principal's engagement and awareness about air pollution issues, whether 634 

schools/classrooms are differentially exposed to ambient air pollution, whether 635 
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classrooms vary in the level of air exchange with outdoor air pollutants, classroom 636 

volumetric size, etc. Moreover, we control for a set of time-specific fixed effects, 𝛤𝑡, 637 

accounting for the differential exposure during different periods of time throughout the 638 

year (days, season), as well as during different times of the day (morning, afternoon, 639 

etc.). Finally, 𝜖𝑐𝑠𝑡 is an unobserved error term. The parameter 𝛽 captures the effect of the 640 

HEPA purifier on indoor particle pollution. We estimate 𝛽 by running an OLS regression 641 

of equation (1), clustering standard errors at the school-classroom level. To test 642 

Hypothesis H1.1. we test the null hypothesis that �̂� < 0 against the alternative that �̂� = 0. 643 

 644 

Hypothesis 1.2.a: Students learn and understand (i) the effects of air pollution in health, 645 

(ii) how to identify critical periods of air pollution (i.e., high AQI), and (iii) strategies to 646 

mitigate exposure.  647 

We estimate the following equation: 648 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑖𝑐𝑠𝑡 = 𝛼 + 𝛽𝑡𝐸𝐵𝑆𝑖𝑐𝑠 + 𝛿𝑖 + 𝜆𝑐𝑠𝐷𝑡 + 𝜖𝑖𝑐𝑠𝑡 (2) 

Where 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑖𝑐𝑠𝑡 refers to three separate indices of learning and understanding of the 649 

concepts in (i), (ii) and (iii) (where these are detailed in section 2 above) for student 𝑖 in 650 

classroom 𝑐 in school 𝑠 and survey-round 𝑡. In this equation 𝐸𝐵𝑆𝑖𝑐𝑠 is a dummy that 651 

denotes whether a student and his/her classroom has been randomly assigned to receiving 652 

treatment EBS, 𝛿𝑖 denotes student-specific fixed effect, 𝜆𝑐𝑠 denotes school-classroom-653 

specific fixed effects, 𝐷𝑡 denotes survey-round specific dummies and 𝜖𝑖𝑐𝑠𝑡 is an error 654 

term. The parameter of interest 𝛽𝑡 captures the differential effect on learning and 655 

understanding of (i) through (iii) of assignment to treatment EBS, while allowing for this 656 

effect to change over consecutive survey rounds 𝑡. A more general specification 657 

aggregates over all survey-rounds 𝑡 and, accordingly, estimates 𝛽 instead of 𝛽𝑡. 658 

We estimate 𝛽𝑡 in equation (2) by running an OLS regression clustering standard errors 659 

at the school-classroom and survey-round level. To test Hypothesis H1.2.a. we test the 660 

null hypothesis that 𝛽�̂� < 0 against the alternative that 𝛽�̂� = 0. We evaluate the more 661 

general specification, with only 𝛽, as before. 662 

It could be that the effect of treatment EBS on learning varies by student’s school grade, 663 

such that those students in 8th grade could more easily grasp the content of the educational 664 

campaign than, say, those students in 6th or 7th grade. To examine this possible differential 665 
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effect by school grade we interact 𝐸𝐵𝑆𝑖𝑐𝑠 with 𝐷𝑔, where 𝐷𝑔 is a school grade-specific 666 

dummy.32 667 

 668 

Hypothesis 1.2.b: Students change their behavior so as to mitigate their personal 669 

exposure.  670 

We estimate the following equation: 671 

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑖𝑐𝑠𝑡 = 𝛼 + 𝛽𝑡𝐸𝐵𝑆𝑖𝑐𝑠 + 𝛿𝑖 + 𝜆𝑐𝑠𝐷𝑡 + 𝜖𝑖𝑐𝑠𝑡 (3) 

Where 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑖𝑐𝑠𝑡 refers to an index of self-reported behaviors to mitigate exposure to 672 

high air pollution for student 𝑖 in classroom 𝑐 in school 𝑠 and in survey-round 𝑡. 673 

Moreover, 𝐸𝐵𝑆𝑖𝑐𝑠, 𝛿𝑖, 𝜆𝑐𝑠, 𝐷𝑡 and 𝜖𝑖𝑐𝑠𝑡 are defined as in equation (2) above. To assess 674 

Hypothesis 1.2.b we test the null hypothesis that 𝛽�̂� < 0, against the alternative that 𝛽�̂� =675 

0, where we obtain 𝛽�̂� by OLS with cluster-robust standard errors. We also test the more 676 

general version substituting 𝛽 for 𝛽𝑡. Additionally, to examine school grade-specific 677 

effects of treatment EBS on adoption of behavioral strategies we test the school grade-678 

specific model by interacting 𝐸𝐵𝑆𝑖𝑐𝑠 with the grade-specific dummy 𝐷𝑔. 679 

 680 

Hypothesis 2: HEPA Purifiers in classrooms and personal mitigation strategies improve 681 

students’ health.  682 

We estimate the following equation: 683 

𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑐𝑠𝑡 = 𝛼 + 𝛽𝑡𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠 + 𝛿𝑖 + 𝜆𝑐𝑠𝐷𝑡 + 𝜖𝑖𝑐𝑠𝑡 (4) 

Where 𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑐𝑠𝑡 refers to respiratory health of student 𝑖 in classroom 𝑐 in school 𝑠 and 684 

survey-round 𝑡. Specifically, lung capacity (FEV1 and PEF, as measured by spirometry) 685 

and an index of self-reported health. Variables 𝛿𝑖, 𝜆𝑐𝑠, 𝐷𝑡, and 𝜖𝑖𝑐𝑠𝑡 are defined as before. 686 

Moreover, 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠 refers to either 𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑟𝑐𝑠 (for treatment Purifier) or 𝐸𝐵𝑆𝑖𝑐𝑠 687 

(for treatment EBS), and 𝛽𝑡 captures the effect of assignment to any of the mitigation 688 

strategy treatments on students’ respiratory health. A more general version substitutes 𝛽𝑡 689 

simply for 𝛽. As before, we estimate 𝛽𝑡 with cluster-robust standard errors accounting 690 

 
32 Recall that we will randomize assignment to treatment at the school grade level, so that, as 
recommended by Athey and Imbens (2017), we should not be including school-grade-specific 
fixed effects in our model. 
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for serial correlation. To assess Hypothesis 2 we test the null of 𝛽𝑡 > 0 against the 691 

alternative 𝛽𝑡 = 0.   692 

Moreover, to assess whether there is a differential effect of the two treatments (treatment 693 

Purifier vs. treatment EBS), we estimate equation (4) with both treatments and conduct 694 

an F-test of equality of the parameter estimates associated to each treatment. In addition, 695 

it could be that the effect of mitigation strategies on health varies by student’s age. As 696 

student’s age is almost perfectly correlated with student's school grade, we examine the 697 

differential effects of the mitigation strategies by school grade by interacting 698 

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠 with the grade-specific dummy 𝐷𝑔. 699 

 700 

Hypothesis 3: Technological and behavioral strategies, and their associated 701 

improvements in respiratory health, result in better educational outcomes. 702 

We estimate the following equation: 703 

𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠𝑡 = 𝛼 + 𝛽𝑡𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠 + 𝛿𝑖 + 𝜆𝑐𝑠𝐷𝑡 + 𝜖𝑖𝑐𝑠𝑡 (5) 

Where 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠𝑡 refers to scores in standardized cognitive tests, school attendance 704 

and grades in final exams of student 𝑖 in classroom 𝑐 in school 𝑠 and survey-round 𝑡.33  705 

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠, 𝛿𝑖, 𝜆𝑐𝑠, 𝐷𝑡 and 𝜖𝑖𝑐𝑠𝑡 are defined as before. When running these 706 

regressions, we also evaluate whether there is a differential effect of each of the two 707 

treatments on educational outcomes by means of running (5) with the two treatments and 708 

then conducting an F-test of equality of treatment effects. Moreover, it could be that the 709 

effects of mitigation strategies on educational outcomes are mediated by the student’s 710 

age (proxied by his/her school grade). Thereby, we also interact 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠 with the 711 

grade-specific dummy 𝐷𝑔. 712 

In addition, to identify effects on education that are directly linked to the effect of 713 

assignment to treatment – via its associated effect on student’s respiratory health – we 714 

estimate equation (6) below instrumenting 𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑐𝑠𝑡 for 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠  (as in equation 715 

(4) above) for each mitigation strategy as well as for both strategies simultaneously.34 716 

 
33 Notice that for school attendance and exam grades we will not be using midlines survey rounds 

but will be using and endline survey round only. 
34 It could be that parents and/or children believe that students should attend school because there 

is a HEPA purifier in the classroom or because students are learning about PMS, even though 
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 717 

𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠𝑡 = 𝛼 + 𝛽𝑡𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑐𝑠𝑡 + 𝛿𝑖 + 𝜆𝑐 + 𝐷𝑡 + 𝜖𝑖𝑐𝑡 (6) 

Thus, we estimate equation (6) using predicted health, 𝐻𝑒𝑎𝑙𝑡ℎ̂
𝑖𝑐𝑠𝑡, running a GMM-IV 718 

regression with 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠  as instruments, and with cluster-robust standard errors 719 

accounting for serial correlation.  We also estimate school-grade specific effects of 720 

predicted health by interacting it with the dummy 𝐷𝑔. Therefore, to assess Hypothesis 3 721 

we test the null of 𝛽𝑡 > 0 against the alternative 𝛽𝑡 = 0 for standardized cognitive tests 722 

and the more general model, using 𝛽, for school attendance, exam grades and 723 

standardized cognitive tests.  724 

 725 

Other Heterogeneous Effects 726 

 727 

We may also look at gender heterogeneity. Recent evidence from rural India suggests 728 

that girls are more sensitive than boys to the adverse effect of air pollution on math and 729 

language test scores (Balakrishnan and Tsaneva, 2021). Balakrishnan and Tsaneva 730 

(2021) hypothesize that this could be due to girls experiencing worse health and worse 731 

access to health care at baseline. However, this gender heterogeneity has not been 732 

examined for urban areas in India, which are exposed to much higher levels of air 733 

pollution than rural areas. To examine and test for heterogeneous effects we will interact 734 

the main dependent variable in equations (5) and (6) with a dummy variable that captures 735 

this heterogeneity (i.e., a gender indicator).  736 

  737 

 

these strategies may have no real effect on health. To address this potential effect we use 

instrumental variable regression. 
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Appendices 1011 

A. Additional Materials 1012 

1. Pilot Analysis 1013 

 1014 

A pilot study was conducted on a sample of 7 schools during the period August through 1015 

December 2022. The intervention consisted of deploying large-capacity HEPA purifiers 1016 

in 3rd grade classrooms. Due to the reduced number of devices all schools were treated 1017 

(i.e., there was no control group), benefiting a total of 157 children. The pilot’s objective 1018 

was to assess the performance of the air purifier devices in a school environment over a 1019 

long period of time, and to estimate the potential effects on students’ attendance resulting 1020 

from reductions in PM pollution inside the classroom. 1021 

 1022 

To measure air pollution exposure, the head teacher in each class was asked to record 1023 

indoor PM pollution levels – as displayed by the devices – four times per day (i.e., at the 1024 

start of the days, before and after each recess, and at the end of the day). Daily attendance 1025 

at the individual level data was provided by each school and month-level attendance at 1026 

the class-level was obtained for comparable schools. We calculated attendance rates for 1027 

both treated schools and non-treated schools for classes in 2nd, 3rd and 4th grade. 1028 

Moreover, we generated a dummy variable for before and after the air purifiers were 1029 

deployed (dummy ‘After’) and a dummy variable denoting those schools that received 1030 

the air purifier (dummy ‘AirPurSchool’), and a third dummy variable denoting the 1031 

interaction of these two (dummy ‘WithAirPur’). The parameter associated with this 1032 

interactive dummy represents the difference-in-difference estimate of the effect of an air 1033 

purifier in the classroom on school attendance rate (the standard errors are clustered at 1034 

the school-level). Results from Table A.1 below show that the deployment of air purifiers 1035 

resulted in an increase of 6 percentual points in attendance rate, which translates into an 1036 

8 percent increase in school attendance.  1037 
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Table A.1: Parameter estimates from Difference-in-Difference regressions analysis. 1039 

  1040 



 

 

 

39 

 

 

1. Figure A.1: Average PM2.5 Pollution in Indian States 1041 

 

 
Figure 2: Annual average PM 2.5 for Indian states, in 2018. Source: urbanemissions.info 

The top panel shows state wise average annual PM2.5 concentrations in 2018. Darker 1042 

colors imply higher concentrations, while lighter colors imply lower concentrations. The 1043 

scale ranges from 0 to 123 𝜇/m3. The states that are located in the northern part of the 1044 

country are much more polluted, in particular the states located just south of the 1045 
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Himalayan Mountain range. Using the national standard of 40 𝜇/m3, the bottom panel in 1046 

Figure 2 splits states into whether their annual averages were above or below this national 1047 

standard. States colored blue had annual average PM2.5 concentrations below the national 1048 

standard, and thus met the national standard. States colored red had annual average PM2.5 1049 

concentrations above the national standard, and thus exceeded the national standard. As 1050 

is clear, most states located in the central or northern parts of the country had PM2.5 levels 1051 

above the national standard. 1052 

  1053 
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B. Survey Questionnaires 1054 

1. Air Pollution, Respiratory Symptoms & Socioeconomics 1055 

For our project-specific questionnaire, please open this document: 1056 

https://drive.google.com/file/d/1wqgeTLQKyOiHShsCCcTy4h9Mt47ZIWFP/view?usp=sharing 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

 1066 

 1067 

 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

  1083 

https://drive.google.com/file/d/1wqgeTLQKyOiHShsCCcTy4h9Mt47ZIWFP/view?usp=sharing
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2. Young Lives School Survey – Language Questionnaire 1084 

For the language questionnaire (in English), please open this document: 1085 

https://www.younglives.org.uk/sites/default/files/migrated/TEST_English%20Form_Wave%2011086 

%20FINAL.pdf 1087 

 1088 

 1089 

 1090 

 1091 

 1092 
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 1115 

  1116 

https://www.younglives.org.uk/sites/default/files/migrated/TEST_English%20Form_Wave%201%20FINAL.pdf
https://www.younglives.org.uk/sites/default/files/migrated/TEST_English%20Form_Wave%201%20FINAL.pdf
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3. Young Lives School Survey – Math Questionnaire 1117 

For the math questionnaire (in English), please open this document: 1118 

https://www.younglives.org.uk/sites/default/files/2021-12/School%20survey%202016-1119 

17_in_w1_Students%20Maths%20Test_0.pdf 1120 

 1121 

  1122 

https://www.younglives.org.uk/sites/default/files/2021-12/School%20survey%202016-17_in_w1_Students%20Maths%20Test_0.pdf
https://www.younglives.org.uk/sites/default/files/2021-12/School%20survey%202016-17_in_w1_Students%20Maths%20Test_0.pdf
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 1123 

4. Corsi Memory Test  1124 

Following Berkouwer and Dean (2024), we will implement the Reverse Corsi Block task on a 1125 

Tablet device. For each trial, nine blue blocks appear in random locations on the screen. They 1126 

take turns lighting up yellow. Students are then asked to tap the blocks in reverse order as how 1127 

they lit up (see figure below). For each block in the sequence, if the student taps on the correct 1128 

block, it turns on green and the student can proceed to tapping on the next block in the sequence. 1129 

If the respondent taps on the wrong block, it flashes red and the trial ends. The student then 1130 

moves on to the next trial. The first trial sequence contains only two blocks, and consecutive trials 1131 

keep on adding one additional block. 1132 

 1133 

 1134 

 1135 

 1136 

  1137 
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C. Figures for Educational and Behavioral Strategies 1138 

1. Example of Educational Material for Teaching About the Effects of 1139 

Air Pollution on Health. 1140 

 1141 

  1142 
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2. Example of Educational Material for Teaching Students How to 1143 

Identify When Air Pollution Has Reached Critical Levels. 1144 

 1145 

 1146 

  1147 
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3. Example of Educational Material for Teaching About Strategies to 1148 

Mitigate the Effects of Air Pollution on Health. 1149 

 1150 
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1. Introduction 29 

 30 

Air pollution is linked to millions of deaths in the developing world and a myriad of other 31 

health problems (WHO 2016, HEI 2020). South Asia, and India in particular, suffers 32 

from some of the highest air pollution concentrations, where Delhi consistently ranks at 33 

the very top of the most polluted cities in the world (IQAir, 2024). Air pollution is linked 34 

to 5.3 fewer years of life expectancy for India and 11.9 fewer years of life expectancy for 35 

Delhi (AQLI 2023), on average. In this work we experimentally assess technological and 36 

behavioral strategies to mitigate the adverse effects of air pollution on the health and 37 

educational outcomes of school children in Delhi.  38 

Air pollution also negatively impacts education and human capital accumulation, thus 39 

hampering human and economic development (Aguilar-Gomez et al., 2022). Avoiding 40 

exposure to air pollutants is especially important for children (Nhung et al., 2017; 41 

Goldizen et al., 2016; Schwartz, 2014) and for those suffering from chronic pulmonary 42 

diseases, such as asthma, which is more prevalent in children (Laumbach et al., 2015).1 43 

Air pollution is causally linked to adverse effects on children’s health (Currie and 44 

Neidell, 2005), school absenteeism (Currie et al., 2009; Chen et al., 2018), standardized 45 

test scores (Bharadwaj et al., 2017; Carneiro et al., 2021; Heissel at al., 2022; Heyes and 46 

Saberian, 2024) as well as test-takers’ future wages (Ebenstein et al., 2016).  For India, 47 

fine particulate matter (i.e., particulates of size of 2.5 microns or smaller, PM2.5) is 48 

causally linked to increased school absenteeism (Singh,2022) and reduced academic 49 

performance of children in rural (Balakrishnan and Tsaneva, 2021) and urban areas 50 

(Singh et al., 2022). Moreover, high levels of air pollution in childhood can carry long-51 

lasting negative consequences well into adulthood (Isen and Walker, 2017).  52 

Control of air pollution has proven very challenging for developing countries. Air 53 

pollution is a multifaceted problem involving many actors, economic sectors and even 54 

varying geographies as the source of air pollutants. Moreover, developing countries often 55 

seek to raise living standards through added manufacturing activity of highly polluting 56 

industries, a view in which air pollution control is not a priority. The problem is made 57 

 
1 Children are more sensitive than adults to air pollution because they have a faster breathing rate, 

a relatively immature respiratory system and overall lower immunity. Moreover, due to their 

young ages, children are more likely to suffer from cumulative cognitive impacts from air 

pollution exposure (Ke at al., 2022). 

Revised Manuscript (without Author Details)



 

 

 

2 

 

 

worse by weak regulatory capacity. Recent policies that target the sources of air pollution 58 

in Delhi have shown some progress, but these have not achieved improvements at the 59 

magnitude and speed necessary to bring air pollution down near safe levels in the 60 

foreseeable future. In lieu of the magnitude of the problem and slow progress, individuals 61 

are often left with few options other than suffering from high levels of air pollution and/or 62 

engage in private defensive investments (such as buying air purifiers) and personal 63 

adoption of exposure mitigation strategies (henceforth, ‘behavioral strategies’).2,3 We 64 

discuss these strategies in turn. 65 

Adoption of behavioral strategies to mitigate exposure to air pollution has been shown to 66 

be effective at mitigating the adverse effects of air pollution on health. For example, 67 

wearing face masks has been shown to reduce airway inflammation associated with 68 

particle air pollution (Guan et al., 2018), reduce the decline of lung function (Shakya et 69 

al., 2016), and improve measures of blood pressure (Shi et al. 2017). Avoiding cooking 70 

with biomass and solid fuels and ventilating indoor cooking areas has been shown to 71 

improve lung function and reduce the risk of chronic obstructive pulmonary disease 72 

(COPD) (Zhou et al., 2014). Staying indoors on high-pollution days and limiting physical 73 

activity outdoors, or near sources of air pollution, has been shown to decrease markers 74 

of respiratory and systemic inflammation (Giles and Koehle, 2014; Madureira et al., 75 

2019). For those who suffer from asthma, higher asthma control (with the correct use of 76 

inhalers) has been shown to mitigate the adverse effects of PM2.5 pollution on lung 77 

capacity (Mirabelli et al., 2015).4 In terms of adoption of comprehensive behavioral 78 

strategies, Araban et al. (2017) find that an educational program can positively change 79 

the behavior of pregnant women in Iran by modifying outdoor activity, particularly 80 

 
2 Private defensive strategies can serve as both complementary measures as well as a stopgap 

until effective long-term public policies to reduce air pollution are drafted and enacted. 
3 Some key personal behavioral strategies for the Indian context include the following: wearing 

masks on days in which air pollution reaches critical levels; avoiding bursting firecrackers; 

avoiding exercising outside and staying indoors when outdoor pollution is high; avoiding 

spending time near those that smoke; avoiding sources of indoor air pollution at home, such as 

minimizing burning incense, oil candles ('diyas'); avoiding burning biomass indoors and clear 

fumes/smoke in kitchen area, etc. We will discuss these in further detail in the Interventions 

section. 
4 For a thorough discussion of the evidence, from clinical trials, on behavioral strategies to 

mitigate the adverse effects of air pollution see Carlsten et al. (2020). Moreover, Laumbach and 

Cromar (2022) reviews the evidence for and against personal mitigation strategies and provide 

public health recommendations for the context of high-income countries, whereas WHO (2020) 

provides public health advice for low- and middle-income countries. 
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during episodes in which air quality alerts are issued.5 However, to the best of our 81 

knowledge, there is no experimental evaluation of the effects of a campaign involving a 82 

comprehensive package of behavioral strategies for mitigating the effect of air pollution 83 

exposure on students' health and educational outcomes. 84 

On the other hand, air purifiers are a defensive technology that has proven effective at 85 

reducing indoor air pollution and improving health (Cheek et al., 2021). The existing 86 

literature finds that High-Efficiency Particulate Air (HEPA) purifiers reduced ultra fine 87 

particulate matter concentrations by 71 percent inside unoccupied school classrooms in 88 

Washington State, USA (Carmona et al., 2022)6, and reduced PM2.5 concentrations by 70 89 

percent inside primary school classrooms in Hangzhou, China (Tong et al., 2020). 90 

Moreover, these HEPA air purifiers in school classrooms resulted in positive effects on 91 

a variety of children’s respiratory outcomes in China (Yang et al., 2021)7, but no effect 92 

on asthmatic children in schools in the northeast of the USA (Phipatanakul et al., 2021) 93 

where children are exposed to significantly lower levels of PM2.5 pollution.8 However, to 94 

the best of our knowledge, there is no experimental assessment of the potential for HEPA 95 

air purifiers to improve children’s educational outcomes in any major city in India.9  96 

This work aims to fill the gaps in the literature by providing experimental evidence on 97 

the link between both behavioral strategies to mitigate air pollution exposure and 98 

technological strategies to reduce air pollution in classrooms, and the associated effects 99 

on accumulation of human capital, broadly defined (i.e., maintaining good health, 100 

achieving a good education, and gaining productive skills) — a key factor in the pursuit 101 

 
5 The intervention was composed of three parts: a motivational workshop, a booklet and daily 

SMS text messages. See also Jasemzadeh et al. (2018). 
6 For a review of the literature on the effects of HEPA air purifiers in the USA, see Cheek et al. 

(2021). 
7 Importantly, Yang et al. (2021) does not link children’s respiratory outcomes to their 

educational performance. Regarding other health outcomes associated with reduced air pollution 

due to deployment of HEPA air purifiers, the existing literature finds positive effects in reducing 

blood cadmium of pregnant women in Mongolia (Barn et al., 2018), decrease in children’s visits 

to doctors in Ohio, USA (Lanphear et al., 2011), reductions in airway inflammation among 

college students in Shanghai, China (Chen at al., 2015), an improvement in airway mechanics of 

healthy young adults in Shanghai, China (Cui et al., 2018). 
8 Children in the USA study are exposed to average PM2.5 concentrations of 5.4 𝜇𝑔/𝑚3, whereas 

children in the China study are exposed to average PM2.5 concentrations of 72 𝜇𝑔/𝑚3. 
9 For our sample of KV schools in Delhi the average PM2.5 concentrations ranges from 142 

𝜇𝑔/𝑚3 to 231 𝜇𝑔/𝑚3 for the period October 2023 to January 2024 (a period of time comparable 

to that of our intervention). This is twice as large as the average PM2.5 concentrations for children 

in China reported by Yang et al., (2021). This is important because there is compelling evidence 

that the effect of air pollution on health needs not be linear, so that extrapolation from existing 

literature to a setting with air pollution concentrations such as in India may yield bias results. 
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of human and economic development. We believe that schools are an ideal setting for 102 

enhancing awareness of air pollution problems from an early stage through informational 103 

and educational campaigns. Students are used to a teaching and learning environment in 104 

school, and evidence shows that they can remember specific taught points when being 105 

taught about air pollution (Whitehouse and Grigg, 2021). Moreover, schools constitute a 106 

setting in which this sort of intervention could potentially be scaled up with only small 107 

changes in the teaching curriculum. On the other hand, although air purifiers have 108 

become relatively more affordable over recent years, there are still important financial 109 

constraints for households in developing countries to buy air purifiers for their homes.10 110 

Moreover, as children spend a large fraction of their daily time at school, air purifiers at 111 

home provide only a partial solution to mitigating exposure to indoor air pollution. 112 

Importantly, children are usually the least likely to be able to protect themselves from 113 

high air pollution. Children, and/or their caregivers, cannot privately engage in 114 

purchasing this technological defense for their school classrooms as only educational 115 

authorities can allow for and can carry out this sort of policy.  116 

Thus, in this work we experimentally assess the potential of both a comprehensive 117 

educational campaign of behavioral strategies – tailored to students’ environmental and 118 

sociocultural context – and HEPA purifiers in classrooms and for mitigating the adverse 119 

effects of air pollution on children in Delhi’s schools, a setting of very high air pollution. 120 

We hypothesize that: [H1] Adoption of behavioral strategies mitigates students’ exposure 121 

to high air pollution and HEPA purifiers in classrooms reduce indoor air pollution.11 122 

Moreover, we hypothesize that [H2] these behavioral and technological strategies 123 

improve students’ respiratory health; and that [H3] these strategies and their associated 124 

improvements in respiratory health result in better educational outcomes. 125 

To test these hypotheses, we will conduct a randomized controlled trial (RCT) in about 126 

9,000 students from 180 classes in KV Schools in Delhi. We will evaluate two 127 

interventions aimed at mitigating the adverse effects of air pollution in children. In the 128 

first intervention we conduct an educational campaign among students of these schools 129 

designed to teach them about both the effect of air pollution on health and about 130 

 
10 Due to economies of scale for large spaces, HEPA purifiers for purifying indoor air in 

classrooms are relatively cheaper than for purifying indoor air in homes.  
11 More specifically, we hypothesize that students learn and understand (i) the effects of air 

pollution in health, (ii) how to identify critical periods of air pollution (i.e., high Air Quality 

Index, AQI), and (iii) once taught, students change their behavior so as to adopt strategies that 

mitigate their personal exposure. 
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behavioral strategies to mitigate the harmful effects of exposure, thus seeking to 131 

encourage adoption of these strategies for students in Delhi’s KV schools. In the second 132 

intervention, in addition to the educational campaign, we also deploy HEPA purifiers in 133 

randomly selected classrooms of these schools. We evaluate these interventions by 134 

measuring self-reported adoption of personal mitigation strategies and monitoring air 135 

pollution inside the classrooms. Moreover, we evaluate health effects associated with 136 

reduced indoor air pollution and exposure – by measuring students’ lung capacity and 137 

self-reported health – and evaluate educational outcomes — specifically, scores in 138 

standardized cognitive tests, school attendance, and grades in final exams. Evidence from 139 

our pilots shows that HEPA air purifiers can effectively reduce indoor air pollution inside 140 

the classroom, and that this reduction is linked to an improvement in students’ school 141 

attendance (see Appendix A.1 below). 142 

This work makes four contributions to the broader literature of environment, health and 143 

education in developing economies.  144 

First, this work advances the literature by focusing on the role of information and 145 

education in protecting children’s health. More specifically, this work proposes to 146 

examine the added effect of a tailored educational campaign that seeks to promote 147 

behavioral change for reducing exposure to air pollution among school children. 148 

Information-based interventions can be easily scaled up. Therefore, assessing 149 

experimentally the effect of this intervention can inform policymakers about the cost-150 

effectiveness of this type of policy. 151 

Second, this work contributes to the literature on technology adoption for mitigating 152 

environmental hazards and improving health in developing countries. For example, the 153 

literature on the adoption of clean cookstoves (Pattanayak et al., 2019; Jeuland et al., 154 

2020; Afridi et al., 2021; Berkouwer and Dean, 2023) has found that improved 155 

cookstoves result in a significant decrease in peak indoor air pollution although finds no 156 

statistically significant decrease in average exposure to air pollution nor in health 157 

biomarkers (Berkouwer and Dean, 2023). In a closely related paper, Chowdhury et al. 158 

(2024) is examining the drivers of adoption of HEPA purifiers and their associated effects 159 

on health and labor outcomes at the household level (although results have not been 160 

reported yet). This work expands this literature by examining the potential of HEPA 161 

purifiers for mitigating the adverse effects of indoor air pollution on children’s health 162 

and educational performance in developing countries.  163 
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Third, this work contributes to the broad literature on development economics that seeks 164 

to understand the barriers to adopting highly effective preventive behavior for mitigating 165 

the burden of multiple health hazards and diseases faced by developing countries (Dupas, 166 

2011). One possible explanation for this low adoption is a lack of information on the 167 

consequences of health hazards and diseases and the effectiveness of preventative 168 

behaviors (Dupas, 2011). In this regard, our work expands the limited literature that 169 

evaluates the implementation of educational campaigns to incentivize better healthcare 170 

practices and thus improve human health.12 Our work expands this literature by designing 171 

an educational campaign that not only delivers information but also teaches actionable 172 

behavioral strategies for encouraging adoption of preventive behavior among school 173 

children.  174 

Fourth, we assess whether these health-enhancing strategies could also positively affect 175 

educational outcomes. Current empirical evidence from public health campaigns aimed 176 

at eradicating persistent diseases in developing countries (e.g., malaria) shows mixed 177 

results in promoting educational attainment and literacy (Lucas, 2010; Cutler et al., 178 

2010). This literature also indicates that adopting health-enhancing technologies (e.g., 179 

water treatment, clean energy) that potentially reduce human pollution risk may raise 180 

educational attainments, not only through health improvements (Zhang and Xu, 2016) 181 

but also via a human capital investment mechanism (Choudhuri and Desai, 2021). Our 182 

work contributes to this literature by assessing interventions that can potentially 183 

disentangle the direct and indirect effects of behavioral and technological interventions 184 

on educational performance, having as mediator health improvements. 185 

The rest of this document is organized as follows. The next section presents the 186 

background and context of the problem of air pollution in Delhi and the schools where 187 

we will conduct the fieldwork. Section 3 presents the research design, where we state the 188 

hypotheses that will be examined, the methodological framework, and conduct power 189 

analysis. Section 4 describes the data collection process and project timeline. Section 5 190 

 
12 This literature supports that health-oriented information has incentivized safe water behaviors 

(Madajewicz et al., 2007; Luoto et al., 2014), promoted protection strategies against tropical 

diseases such as malaria and dengue (Dammert et al., 2014; Cohen and Saran, 2018), reduced 

indoor pollution from cooking stoves - therefore the prevalence of respiratory health problems 

(Afridi et al., 2021), and encouraged HIV/AIDS testing behavior (Derksen et al., 2022; Yang et 

al., 2023; Yu, 2023) in developing countries. 
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presents the statistical models that will be employed to test the hypotheses and section 6 191 

states administrative project information. 192 

 193 

2. Background and Context 194 

 195 

Delhi is home to about 20 million people, with an additional few million if we account 196 

for surrounding satellite cities and towns. The air quality is very poor, with an average 197 

PM2.5 concentration of roughly 120 micrograms per cubic meter (μg/m3) in 2023. The 198 

national air quality standard for India requires annual average PM2.5 concentrations not 199 

to exceed 40 μg/m3. Delhi has been in violation of these standards for at least the past 200 

two decades. Air pollution in Delhi is also highly seasonal. Colder months typically see 201 

worse air quality levels, while the Monsoon (late summer) period is the cleanest. Figure 202 

1 below illustrates this. This figure uses data for the year 2023 from ambient air quality 203 

monitors maintained by India’s Central Pollution Control Board. The horizontal red line 204 

shows India’s standard for annual average PM2.5. Delhi’s air quality typically tends to be 205 

in compliance with the annual standard only during July, August, and September. In the 206 

winter months of November to January, in particular, the quality of the air deteriorates to 207 

very high levels.13  208 

 209 

 
13 This is due to several factors: the primary factor being the lower temperatures and the resulting 

temperature inversions that limit the ventilation of the airshed.  In addition to this, other reasons 

can be smoke that comes from the widespread stubble burning that takes place in states 

northeast/upwind from Delhi (Punjab and Haryana) during November. 
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 210 

Figure 1: Monthly averages of PM2.5 for Delhi in 2023. Data taken from all active air quality 211 

monitors maintained by the Central Pollution Control Board 212 

 213 

Since 2017 Delhi, and the surrounding satellite towns and cities that make up the National 214 

Capital Region (NCR), has instituted a comprehensive policy to reduce air pollution. This 215 

policy, called the Graded Response Action Plan (GRAP), consists of four stages. Stage I 216 

is put in place when the predicted air pollution exceeds a certain cut-off. Subsequent 217 

stages - Stages II, III and IV - are invoked when air pollution is predicted to exceed 218 

progressively higher cut-offs. Relevant to our interventions, Stage IV of the GRAP 219 

requires schools to be shut down when air quality is predicted to be particularly bad. For 220 

instance, in 2023 in Delhi, primary schools were shut down from November 6th to 221 

November 18th, while schools at all levels were shut down from November 8th onwards.14 222 

Therefore, if HEPA purifiers in classrooms turn effective at reducing air pollution in 223 

classrooms and improving students’ health and educational outcomes, Stage IV of the 224 

GRAP policy may no longer be necessary. Instead, a policy that invests and deploys this 225 

 
14 School closures by themselves are however unlikely to be particularly useful in protecting 

children from air pollution. First, the decision to close schools is typically taken after air quality 

has already reached hazardous levels. Second, children are likely exposed to the same poor-

quality air when they are at home. Closing schools may prevent some minor additional exposure 

during commutes, but this is unlikely to be very large. Moreover, the loss of school days that 

result from these school closures can hamper children’s learning, and the cumulative effect of 

this reduction in school days is likely to show up as fewer lessons are effectively learned. 
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sort of air purifier can then allow for keeping children attending and learning at school 226 

even during episodes of very high air pollution. 227 

Our choice of school partner is the Delhi branch of the Kendriya Vidyalaya (KV) schools, 228 

which translates to Central Government Schools in English. India’s KV schools are a 229 

nationwide system of public schools that cover all grades (called “standards'' in India), 230 

from primary all the way to school completion.15 These schools offer the same syllabus 231 

across the board and a highly standardized education system. The major advantage of 232 

working with KV schools is that they offer a very promising scope to examine how the 233 

interventions we examine could potentially be expanded on a national scale. Scaling up 234 

is important because air quality in most parts of India – particularly the northern plains 235 

region, where hundreds of millions of people live – is extremely poor, just as bad as it is 236 

in Delhi.16  Therefore, if the behavioral strategies evaluated in this work turn effective, 237 

then a small change in the teaching curriculum can go a long way in mitigating the 238 

harmful effects of air pollution exposure throughout a vast number of geographical areas 239 

in India and other regions of the world suffering from very high air pollution. 240 

 241 

3. Research Design 242 

 243 

a. Objectives and Main Hypothesis 244 

 245 

The main objective of this work is to experimentally assess behavioral strategies for 246 

mitigating children’s exposure and technological (i.e., HEPA air purifiers) for mitigating 247 

indoor air pollution in classrooms, the positive health effects associated with this 248 

mitigation, and whether this results in improved educational outcomes. We hypothesize 249 

that these strategies can result in important benefits for students in Delhi schools.  250 

 251 

 
15 These schools were initially set up to serve children of parents who work in jobs that require 

significant long term stays in different parts of the country, such as in the armed forces or in 

government. In order that their children’s education does not suffer. 
16 The national scale of the problem is illustrated in Figure A.1 in Appendix A. 
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b. Main outcomes of Interest 252 

 253 

By means of a survey questionnaire, we assess students’ understanding and learning of 254 

key components of the educational and behavioral intervention. Specifically, we assess 255 

understanding and learning of (i) the effects of air pollution on health, (ii) identification 256 

of periods of high air pollution (specifically, high Air Quality Index), and (iii) personal 257 

strategies to mitigate exposure to high air pollution. In addition, the survey questionnaire 258 

will allow us to gauge whether students have actually engaged in any of these behavioral 259 

strategies. Moreover, we examine the effect of air purifiers on indoor particle air 260 

pollution. To measure this, we will deploy indoor pollution monitors that will log real-261 

time readings of fine and coarse particulate matter pollution (PM2.5 and PM10). These 262 

monitors will be deployed in both classrooms with HEPA purifiers and control 263 

classrooms. Moreover,  264 

Next, we examine whether these behavioral and technological mitigation strategies result 265 

in improved respiratory health by measuring students’ lung capacity using Peak 266 

Expiratory Flow (PEF) meters.17 In particular, we will measure a students’ PEF over 1 267 

second.18 We complement this assessment with survey questions on self-reported health, 268 

focusing on those health symptoms that are more closely associated with high air 269 

pollution.  270 

Finally, we measure students’ educational outcomes in three ways. We obtain data on 271 

individual-level school attendance from schools’ official registries, perform standardized 272 

learning and cognitive tests throughout the school year19, and assess students' grades 273 

throughout the year and in their final exams. The survey questionnaire, PEF 1s sampling, 274 

 
17 Peak Expiratory Flow meters is a low-cost device to assess and monitor prevalence and risk of 

chronic respiratory diseases, such as Asthma and Chronic Obstructive Pulmonary Disease COPD 

(Agusti et al., 2021), that allows to identify health effects even from modest variations in short-

term exposure to PM2.5 air pollution (Rice et al. 2013). 
18 Dong et al. (2019) show that portable ionization air purifiers in school classrooms, even for a 

short period of time (5 days), increase PEF 1s among children 12 years old in Beijing, China, 

whereas Weichenthal et al. (2013) show similar effects among indigenous populations in 

Manitoba, Canada. 
19 For assessing learning of math and language, we employ the Young Lives School Survey 

(YLS). Whereas for cognitive assessment we employ the Reverse Corsi Block task to measure 

working memory (Brunetti et al., 2014). This test has been shown to be sensitive even to modest 

changes in average air pollution exposure (Berkower and Dean, 2023).   
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questions on self-reported health,, and standardized cognitive tests will all be conducted 275 

several times during the data collection.  276 

 277 

c. Testable Hypotheses 278 

 279 

We hypothesize that  280 

Hypothesis 1: Behavioral strategies mitigate students’ exposure to high air 281 

pollution and technological strategies reduce air pollution in classrooms  282 

 283 

From this, we have two auxiliary hypotheses. A twofold Hypothesis 1.1 284 

Hypothesis 1.1.a: Students can understand and learn the following: (i) the effects 285 

of air pollution on health, (ii) how to identify critical periods of air pollution (i.e., 286 

high Air Quality Index, AQI), and (iii) personal behavioral strategies to mitigate 287 

exposure.20  288 

Hypothesis 1.1.b: Once (i) through (iii) above are taught and learned, students 289 

change their behavior to adopt strategies that mitigate their personal exposure 290 

to air pollution.  291 

and  292 

Hypothesis 1.2: Air purifiers reduce indoor air pollution while students are in the 293 

classroom. 294 

 295 

Next, we evaluate whether these strategies can reduce the harmful effects of air pollution 296 

by posing the following hypothesis. 297 

 298 

 
20 We are planning on teaching students ten personal exposure mitigation strategies. These 

include: avoidance behaviors of ambient and indoor air pollution, defensive behaviors for 

ambient and indoor air pollution, behavioral change to minimize emissions of indoor air 

pollution, and heightened awareness of own respiratory health. Section 3.d.i. below explains 

these personal behavioral strategies in further detail.  
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Hypothesis 2: Behavioral and technological strategies (i.e., personal behavioral 299 

strategies and HEPA Purifiers in classrooms) improve students’ respiratory health.  300 

 301 

Finally, our last hypothesis is whether improvements in student’s respiratory health leads 302 

to better educational outcomes. Thus, our third hypothesis is 303 

 304 

Hypothesis 3: Behavioral and technological and strategies, and their associated 305 

improvements in respiratory health, result in better educational outcomes. 306 

 307 

Table 1 below summarizes the main outcome variables in relation to how they allow us 308 

to test our hypotheses. 309 

 310 

Table 1: Hypotheses and Outcome Variables 311 

Hypothesis Outcome Variable Unit of Obs. Type Data Source 

 

H1: Air 

Pollution & 

Exposure 

    

H1.1.a Learning of Behavioral 

Strategies 

Student x 

Round 

Index Survey questionnaire 

H1.1.b Adoption Behavioral 

Strategies 

Student x 

Round 

Index Survey questionnaire 

H1.2 Particle Pollution 

(PM2.5) 

μg/m3 in 

classroom x 

20-minutes 

Continuous Indoor pollution 

monitors 

 

H2: Health 

    

H2.1 Lung capacity (FEV1 & 

PEF) 

Student x 

Round 

Continuous Spirometry 

H2.2 Self-Reported Health Student x 

Round 

Index Survey questionnaire 
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H3: 

Education 

 Attendance Student x Day Count Official School 

Registries 

 Standardized test scores Student x 

Round 

Continuous Survey Standardized 

Test 

 Grades Student x Year Grading 

System 

Official School 

Registries 

 312 

d. Methodological Framework 313 

 314 

We will conduct a cluster-randomized controlled trial where we will randomly assign 315 

clusters of students sharing the same classroom (a.k.a. a class) into one of three groups: 316 

(Group 1) those assigned to treatment Educational & Behavioral Strategies (EBS), 317 

(Group 2) those assigned to both treatment EBS and treatment Purifiers, jointly, and 318 

(Group 3) a Control group. That is, we will randomly assign all students in the same class 319 

to only one of these treatment arms. This random assignment will be conducted in 320 

October 2024 by members of the research team in a clear and transparent way. Next, we 321 

explain these treatments in detail. 322 

  323 

i. Treatments 324 

 325 

Treatment EBS: Education and Behavioral Strategies 326 

 327 

The first treatment consists of an educational campaign that will have three components. 328 

Component 1 teaches students about the problem of air pollution in their city and how it 329 

impacts their own health. Component 2 teaches students that exposure to higher levels of 330 

air pollution is associated with higher risks of health hazards.21 Finally, component 3 of 331 

 
21 When referring to these health risks we will follow the health risks categories by the Air Quality 

Index (AQI) of India’s Central Pollution Control Board. Under these categories  ‘Good’ air 

quality (i.e., AQI between 0 and 50) is associated with “Minimal impacts” on health; 

‘Satisfactory’ (AQI between 51 and 100) is associated with “Minor breathing discomfort to 
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this campaign teaches personal strategies to mitigate air pollution exposure and 332 

associated health risks. We seek to deliver this teaching in a positive way that seeks to 333 

bring a sense of self-empowerment to students to ‘fight against’ the adverse effects of air 334 

pollution in their city. We refer to this educational and behavioral strategies treatment as 335 

treatment EBS. As before, assignment to this treatment will be in clusters, such that if a 336 

class is assigned to this treatment then all students in the same class will be assigned to 337 

receiving this treatment 338 

For this intervention we have produced educational material that has educational content 339 

tailored specifically to this intervention. This includes leaflets – which will be handed 340 

out to students and then collected – and a short video – which will be shown to students 341 

in the classroom. This educational material has simple language and is accompanied by 342 

visuals for communicating the contents in a way that is easily understandable by these 343 

students. Next, we describe in further detail the content of each of the three components 344 

of this treatment. 345 

 346 

Component 1: Effects of air pollution on health 347 

For explaining the effects of air pollution on health we have produced a draft of this 348 

educational content (see Appendix C.1 below). In addition, based on this content we have 349 

produced a short video that is similar to this video  from the United Nations Children's 350 

Fund (UNICEF, 2016)  and the ‘Freedom to Breathe’ campaign for India.22  351 

 

sensitive people”; ‘Moderate’ (AQI between 101 and 200) is associated with “Breathing 

discomfort to the people with lungs, asthma and heart diseases”; ‘Poor’ (AQI between 201 and 

300) is associated with “Breathing discomfort to most people on prolonged exposure”; Very Poor 

(AQI between 301 and 400) is associated with "Respiratory illness on prolonged exposure", and 

‘Severe’ (AQI between 401 and 500) is associated with “Affects healthy people and seriously 

impacts those with existing diseases”.  See https://airquality.cpcb.gov.in/AQI_India/. 
22 This video explains – for an Indian context – the problem of air pollution on health and a few 

personal strategies for mitigating exposure. The `Freedom to Breathe' campaign provided an 

opportunity for children to call for their right to clean air to be acknowledged by the United 

Nations Convention on the Rights of the Child (UNCRC). The campaign worked with partners 

across the world to deliver a curriculum-linked education program that helped young people 

understand the state of air quality in their cities, the health harms of poor air quality, and simple 

measures they could take at home and in school to protect themselves from breathing harmful 

pollutants. The campaign was run globally by Blueair -- a Swedish subsidiary of the Unilever 

company that manufactures air purifiers -- in partnership with Global Action Plan, Association 

for the Promotion of Youth Leadership Advocacy and Volunteerism Cameroon (APYLAV), 

Centre for Environment Education, Coalition for Clean Air, and Safekids Worldwide. 

https://www.blueair.com/us/freedomtobreathe.html 

https://www.youtube.com/watch?v=vhSV31IGhLc&ab_channel=UNICEF
https://www.blueair.com/us/freedomtobreathe.html
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 352 

Component 2: Identification of critical levels of air pollution by means of checking the 353 

AQI 354 

Another important component of this intervention is to create awareness about the current 355 

level of ambient air pollutants, at any given period of time, by explaining the Air Quality 356 

Index (AQI) and getting students (and/or getting them to ask their caregivers) to check 357 

the AQI on a regular basis (see Appendix C.2). This component seeks to aid students in 358 

identifying when air pollution has reached critical levels. It is indeed the first behavioral 359 

strategy for mitigating exposure to high ambient air pollution. 360 

 361 

Component 3: Personal strategies to mitigate exposure and its effects on health 362 

The personal strategies to mitigate the adverse effects of air pollution on health include: 363 

(a) avoiding physical activity, exercising and (to the extent possible) spending much time 364 

outdoors when AQI is high or very high; (b) closing of doors and windows when AQI is 365 

high and the indoor environment is clear of air pollution; (c) running an air purifier if it 366 

is available at home; (d) avoiding spending time near people that smoke; (e) asking 367 

parents to minimize burning of incense and oil candles indoors, (f) asking parents to 368 

avoid burning biomass (such as wood fuel, charcoal or dung) for cooking or heating 369 

indoors, (g) avoiding busy roads when going to school, (h) avoiding bursting firecrackers 370 

(which is widespread during the Diwali festivities) and/or spending time near where this 371 

happens; (i) considering wearing an N95-type face mask when AQI is very or extremely 372 

high; (j) paying attention to own health and seek care early on if symptoms arise; (k) if 373 

the student suffers from asthma, remind the student to use his/her inhaler as often as 374 

recommended by the doctor. The figures in Appendix C.3 below illustrate some of these 375 

strategies. 376 

 377 

We will use the figures in appendices C1 through C3 to produce a leaflet that will be 378 

handed to students at the time of delivering the educational intervention. Moreover, we 379 

will show this video that we have produced for the purposes of this intervention that 380 

presents the content of these figures in a more entertaining and pedagogical way. 381 

Importantly, to prevent any possible informational spillovers, we will collect these 382 

leaflets immediately after showing the video. 383 

https://bityl.co/SFpU
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 384 

          Treatment Purifiers: HEPA purifiers in classrooms 385 

 386 

The second treatment consists of deploying high-capacity HEPA purifiers inside 387 

randomly selected school classrooms. These HEPA purifiers contain a filter that filters 388 

up to 99.99 percent of particles of size 0.1 microns (PM0.1) or larger. These air purifiers 389 

have a manufactured-stated clean air delivery rate (CADR) of 600 cubic meters per hour 390 

(21,189 cubic feet per hour) and are suitable for rooms of an area of up to 60 square 391 

meters (645 square feet). This intervention is further accompanied by simple information 392 

and education seeking to enhance the performance of the HEPA purifiers. Specifically, 393 

students and teachers will be asked to keep doors and windows shut during the time the 394 

purifier is running inside the classroom. These purifiers will be running during teaching 395 

hours and will be turned on/off by the class teacher. The field team will be in constant 396 

communication with school principals to ensure that these purifiers perform continuously 397 

during the data collection period and that any malfunction is promptly fixed and logged. 398 

All air purifiers will be deployed and installed in late October and early November 2024 399 

(October 28th to November 4th, 2024).   400 

To assess the reduction of indoor air pollution by these purifiers we will deploy indoor 401 

air pollution monitors inside classrooms in both those classrooms assigned to treatment 402 

Purifier and those in the control group.23 These devices measure fine and coarse particle 403 

air pollution (PM2.5 and PM10) concentrations and record this data internally on an SD 404 

card every 20 minutes. The field team will continuously monitor these devices, download 405 

the data stored in their SD cards to a laptop computer, and then upload th-is data to a 406 

secured storage drive. 407 

   408 

ii. Possible Indirect Effects of Assignment to Treatment Arms 409 

 410 

We anticipate that these treatments may generate effects on indoor air pollution and 411 

exposure that are beyond those directly intended by the assignment to treatment. There 412 

could be non-behavioral changes in indoor air pollution that are triggered by assignment 413 

 
23 These indoor air pollution monitors will also be deployed in ‘pure control’ classrooms. 
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to the treatment arm EBS. For example, parents of children assigned to treatment arm 414 

EBS may decide to buy an air purifier for their home if they hear from their child’s 415 

increased awareness about the problem of air pollution – say, they hear their child 416 

advocating and pushing for household members to engage in behavioral strategies to 417 

mitigate exposure at home. While we do not anticipate being able to prevent this from 418 

happening, we will ask students both at baseline and at follow-up surveys about the 419 

presence of air purifiers at home so that we can properly account for this sort of changes 420 

in indoor air pollution mitigation and examine the possible indirect effects in our 421 

statistical analysis.  422 

Likewise, there could be behavioral changes – triggered by assignment to treatment arm 423 

EBS+Purifier – in such a way that affects students’ exposure to air pollution. For 424 

example, students may feel that, because they are ‘protected from air pollution’ while in 425 

a classroom with an air purifier, then they do not need to be protected themselves from 426 

pollution in      other instances – thus, they may engage in lesser pollution exposure 427 

mitigation behavior than otherwise. Conversely, the presence of the air purifier in the 428 

classroom may work as a salient reminder of the problem of air pollution, in such a way 429 

that students change their behavior by more intensively trying to reduce their exposure 430 

while outside the classroom. That is, an effect that may go beyond that of the EBS 431 

treatment alone. In other words, those students in classrooms assigned to treatment arm 432 

EBS+Purifier may feel more interested and/or engaged in taking additional measures to 433 

reduce their exposure. To examine these possible responses to treatment assignment      we 434 

will include questions in the survey questionnaire about adoption of behavioral strategies 435 

to mitigate exposure both at baseline and at follow-ups, and we will properly account for 436 

these to examine these possible indirect effects in our econometric analysis.  437 

Similarly, if the child is in a classroom assigned to treatment arm EBS+Purifier, and 438 

his/her parents believe that the child will be protected from air pollution while in the 439 

school classroom, then the child’s parents may decide to send the student to school more 440 

often than otherwise. Due to this reason, we can expect a direct increase in students' 441 

attendance rate in classrooms assigned to treatment arm EBS+Purifier that is not directly 442 

linked to improvements in the child’s health. To address this issue, we implement an 443 

instrumental variable regression approach in our empirical strategy (see section 5 below). 444 

 445 
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iii. Possible Violations of SUTVA and Confounding Effects 446 

 447 

We take several provisions to prevent ‘contamination’ of treatments across subjects, or, 448 

more technically, violations of the Stable Unit Treatment Value Assumption (SUTVA). 449 

First, SUTVA may be violated if students in treatment arm EBS share information from 450 

the educational campaign with students in the Control group. This problem is more likely 451 

to occur within the same school than across different schools. To address this potential 452 

problem, we will conduct a multi-stage assignment. More specifically, in the first stage      453 

we will select schools that will serve as ‘control-only’ schools, and in the second stage      454 

we will conduct the random assignment of clusters of students into treatments and control 455 

groups. For classes and classrooms in ‘control-only’ schools, we will conduct the same 456 

surveys and  will deploy the same indoor air pollution monitors. We believe that, if there 457 

is any spillover effect between students in treatment(s) and control groups, we expect 458 

that this spillover will occur between classes within the same school, but it will not occur 459 

across classes from different schools. Therefore, having classes in ‘control-only’ schools 460 

would allow us to assess whether those students in classes that have been randomly 461 

assigned to the Control group effectively remain free of any possible spillover from those 462 

students in classes randomly assigned to any of the treatment groups. If spillovers exist, 463 

then observing those students in classes in ‘control-only’ schools would allow us to 464 

identify that spillover and properly account for it in our statistical analysis.  465 

Second, SUTVA may be violated if classrooms in treatment arm EBS only have students 466 

switching in and out of this classroom during the time of the field experiment. For 467 

example, it might be that, due to the novelty of having an air purifier in the classroom, 468 

students from classes assigned to the treatment arm EBS or Control group may want to 469 

spend time inside classrooms assigned to treatment arm EBS+Purifier. To minimize this 470 

possibility, we will make it explicit to teachers and educators to enforce that only students 471 

in the treatment EBS+Purifier classes should be allowed in those classrooms. We will 472 

ask them to inform us if this is not feasible to enforce, and we will keep a log of instances 473 

in which students swap classrooms. If this situation arises, we expect that this will not be 474 

in a regular basis and therefore exposure will not be long enough to generate a significant 475 

change in children’s health status.  476 

On the other hand, a potential confounder effect can occur as schools close due to a 477 

government mandate as air pollution reaches very high peaks (Stage IV of GRAP policy 478 
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response, as discussed in section 2 above). But as schools in the control and the treatment 479 

group are impacted similarly by closures, we expect a similar exposure outside the 480 

classroom premises. However, we will keep track of the occurrence of school closures 481 

for any reason.  482 

 483 

iv. Sample and statistical power 484 

 485 

We are planning to conduct this experiment in 126 classrooms across 10 schools in 486 

Delhi’s KV schools. Of these classrooms, 54 have two shifts of classes a day (morning 487 

and afternoon), making for a total of 180 classes. Moreover, each class has an average of 488 

50 students, which makes for a total of around 9,000 students. However, of these 10 489 

schools we will select 2 schools to serve as ‘control-only’, leaving us with 8 schools and 490 

between 144 and 150 classes that will be eligible for random assignment to the treatments 491 

and control.24 For simplicity, we will refer to working with a sample of around 147 492 

classes. As the treatments will be assigned at the class level, this will allow for a split of 493 

roughly 49 classes in each of the three treatment arms (the two treatments and the control 494 

group).  495 

Our sample of classes comprises students in 6th, 7th and 8th grade. Thereby, we will 496 

conduct a stratified random assignment at the school grade level (Athey and Imbens, 497 

2017). The rationale for this stratified random assignment is as follows. One of the 498 

important factors likely driving many of our primary outcomes is the student's age and 499 

their associated school grade and cognitive/learning capacity. An older student should 500 

have a more resilient health system that can better withstand adverse environmental 501 

conditions, such as exposure to high levels of air pollution. Thereby, the effects of 502 

mitigating indoor air pollution and exposure to high air pollution on respiratory health 503 

(and thus, educational outcomes) may be less pronounced among older students than 504 

among younger students. Moreover, older students should be better equipped to grasp 505 

the content of an educational campaign aimed at reducing personal exposure, they have 506 

more agency on determining their actual behavior, and thus could possibly mitigate their 507 

exposure to air pollution to a greater extent than younger students. Furthermore, older 508 

 
24 The exact number will depend on the actual 2 schools that we select out for the ‘control-only’ 

group 
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students should be able to perform better in cognitive and learning tests than younger 509 

students. For these reasons, we believe that we should have a balanced sample of students 510 

in 6th, 7th and 8th grade assigned to each of the treatments and to the control group. 511 

Therefore, conducting a stratified random assignment at the school grade level will 512 

guarantee that the treatments and control groups are balanced for each school grade. That 513 

is, for a given school grade, there will be (roughly) as many classrooms in treatment 514 

Purifier as in treatment EBS as in Control groups.25  515 

 516 

Next, we present our power analysis for the Minimum Detectable Effect (MDE) 517 

assuming statistical significance of 5 percent and 80 percent of statistical power. We 518 

present this analysis at the classroom/class level as well as at the student level, depending 519 

on the unit of measurement of the outcome variable. Table 2 below summarizes the 520 

power analysis. 521 

 522 

Classroom/class level outcomes (Panel A of Table 2) 523 

 524 

Particle Pollution (PM2.5) inside classrooms. This analysis relies on our pilot with seven 525 

air purifiers in an equal number of classrooms conducted in August through December 526 

2022. The average PM2.5 pollution inside the classrooms is 133.16 μg/m3 and the standard 527 

deviation is 148.17. Therefore, under equal assignment of classrooms/classes between 528 

treatment and control groups this yields a MDE equal to a 84.72 μg/m3 reduction in PM2.5. 529 

On the other hand, the average reduction in PM2.5 pollution inside classrooms that we 530 

observed in our pilot is 101.2 μg/m3. 531 

 532 

School attendance. This analysis relies on the absenteeism rate reported by (Singh, 2022) 533 

for schools in Delhi. Singh (2022) reports an average absenteeism rate of 26.24 for 6th 534 

to 8th graders in Delhi schools and a standard deviation of 1.4. Therefore, assuming equal 535 

assignment of classes into treatment and control groups, this yields a MDE equal to 0.8 536 

 
25 In our case there will be roughly 14 classrooms, per school grade, assigned to each group. 

Moreover, when conducting the regression analysis we will not control for the strata of 

randomization (i.e., we will not control for school grade), although we will control for all the 

dimensions of fixed-effects as well as their interactions (Athey and Imbens, 2017). 
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reduction in absenteeism rate. On the other hand, the estimated reduction in absenteeism 537 

rate we find in our pilot with air purifiers is 6 percentage points. 538 

 539 

Student level outcomes, clustered at the class/classroom level (Panel B of Table 2)  540 

 541 

Learning Behavioral Strategies. Not currently available (N/A). 542 

 543 

Adoption of behavioral strategies. Although we did not conduct a pilot for the 544 

educational and behavioral intervention, we rely on Araban et al. (2017) for a feasible 545 

mean and standard deviation of an index of adoption of behavioral strategies.26 In 546 

addition, for the class-level intra-cluster correlation (ICC) we rely on estimates from the 547 

‘Balsakhi’ program of remedial education for schools in urban India (Banerjee et al., 548 

2007). Thus, we assume a mean adoption index of 11.2 (for an index that goes from 5 to 549 

20), an associated standard deviation of 2.3, and an ICC of 0.1356.27 Under equal 550 

assignment of class-level clusters of students among treatments/control groups, this 551 

yields a MDE equal to 0.51. On the other hand, Araban et al. (2017) finds an effect of 552 

8.8 for that same index. 553 

 554 

Respiratory health – Lung capacity. We rely on parameters and estimates from Foster 555 

and Kumar (2011) for an index of lung capacity (as measured by spirometry) for children 556 

less than 17 years old in Delhi. The mean index reported by Foster and Kumar (2011) is 557 

 
26 The index of behavioral strategy adoption in Araban et al. (2017) ranges from 5 to 20. This 

was generated by asking four questions to participating individuals and rating the answers in a 5-

point scale. The specific questions were the following: (Q1) “How often did you stay indoors in 

the peak hours of the air pollution - from 7 to 9 am?”; (Q2) “How often did you stay indoors in 

the peak hours of the air pollution - from 6 to 9 pm?”; (Q3) “How often did you stay indoors in 

the days that air quality is in the crisis situation?”; and (Q4) “How often did you avoid entering 

into the high traffic area of the city?”. Answers ranged from ‘never’ (rating = 1) to ‘always’ 

(rating = 5). 
27 In practice, however, our index will range from 10 to 60, so that to compare with those results 

in Araban et al. (2017), once would need to rescale accordingly. The reason for this difference in 

range comes from evaluating ten strategies (as opposed to only four in Araban et al. (2017)) and 

allowing for answers in a 6-point scale. More precisely, for all ten strategies we will create an 

index of adoption of these ten strategies by calculating a score of intensity of adoption of each of 

one of these strategies (where intensity of adoption refers to: ‘always’ adopting a specific 

personal exposure mitigation strategy, ‘usually’…, ‘often’…, ‘seldom’…, ‘rarely’…, and ‘never’ 

adopting a specific personal exposure mitigation strategy).   
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70.44 and its associated standard deviation is 15.35. Moreover, we assume the same ICC 558 

as before. For ease of testing and depending on parents’ authorizations, we expect to      559 

conducting these tests on a subsample of no less than 10 percent of students in each class 560 

(about no less than 5 students per class). This yields a MDE equal to 4.8 for an equal 561 

assignment of class clusters into treatment/control groups. On the other hand, we expect 562 

to find a reduction of 12.32 points in such an index from the air purifier intervention. 563 

This expected reduction comes from multiplying the estimated effect of 1.023 (per 1-564 

μg/m3 of change in PM2.5) found by Foster and Kumar (2011) by a reduction of 12.04 565 

μg/m3 in average ambient PM2.5.
28 566 

 567 

Respiratory health – Self reported symptoms.  We rely on parameters and estimates from 568 

Berkouwer and Dean (2023) for both a (zero-mean standardized) index and a count of 569 

self-reported respiratory health symptoms. Assuming the same ICC and balance split 570 

between treatment and control as before this yields a MDE of 0.22, whereas the effect 571 

found in Berkouwer and Dean (2024) is 0.24 for a 0.8 μg/m3 reduction in average PM2.5. 572 

Similarly, the count of respiratory symptoms has a mean of 1.7 and a standard deviation 573 

of 1.76, thus yielding a MDE of 0.39, which contrasts to the effect found in Berkouwer 574 

and Dean (2024) of 0.48.29 As mentioned above, we expect to find a considerably larger 575 

reduction in average PM2.5 than the one in Berkouwer and Dean (2024). 576 

 577 

Cognitive/learning assessment. We rely on parameters and estimates for a (zero-mean 578 

standardized) index of cognitive memory (Corsi test) from Berkouwer and Dean (2024). 579 

Assuming the same ICC and balance split of treatments/control as before, we obtain a 580 

MDE equal to 0.22. This contrasts with the effect of 0.48 for this index30 for 0.8 μg/m3 581 

reduction in average PM2.5 – a considerably smaller reduction than the one we expect for 582 

our treatment. 583 

 584 

 
28 This 12.04 μg/m3 reduction in average PM2.5 is the result of a 101.2 μg/m3 reduction in indoor 

pollution inside the classrooms (from the air purifier) for a period of 4 hours a day spent inside 

the classroom over 5 days a week. 
29 For the effect of the index and count of respiratory symptoms see Table B.13 in Berkouwer 

and Dean (2024). 
30 See Table B.15 in Berkouwer and Dean (2024). 
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Cognitive assessment – Peabody Picture Vocabulary and Math Test 585 

We rely on parameters and estimates from Balakrishnan and Tsaneva (2021) for a (zero-586 

mean standardized) index of the Peabody Picture Vocabulary Test from the India Chapter 587 

of the Young Lives Survey. Balakrishnan and Tsaneva (2021) find an effect of 0.18 and 588 

.55 for boys and girls, respectively, from a 1-μg/m3 change in the annual mean of PM2.5.
31 589 

On the other hand, assuming the same ICC and balance split of treatments/control as 590 

before, we obtain a MDE equal to 0.22.  591 

 592 

Grade in Final Exams. Not currently available (N/A). 593 

 594 

Table 2: Power Analysis – Input Parameters, Minimum Detectable Effect and Effect Size. 595 

Outcome Variable Mean S. D. ICC MDE Expected 

Effect 

Source 

Panel A. Class level       

Indoor PM2.5 pollution 

(μg/m3) 

133.2 148.2 - 84.72 101.2 Pilot 

Absenteeism rate (%) 26.24 1.4 - 0.8 6 Pilot, Singh (2022). 

       

Panel B. Student level       

Learning behavioral 

strategies  

N/A N/A N/A N/A N/A  

Adoption of behavioral 

strategies (index) 

10.6 2.1 0.136 0.42 8.8 Araban et al. (2017), 

Banerjee et al., 

(2007). 

Respiratory health effects 

(index of lung capacity) 

70.44 15.35 0.136 4.8 12.32 Foster and Kumar 

(2011), Pilot. 

Respiratory health symptoms 

(index) 

0 1 0.136 0.22 0.24 Berkouwer and 

Dean (2023), Pilot. 

Respiratory health symptoms 

(count) 

1.7 1.76 0.136 0.39 0.48 Berkouwer and 

Dean (2023), Pilot. 

Cognitive Test, Corsi 

working memory (index) 

0 1 0.136 0.22 0.48 Berkouwer and 

Dean (2023), Pilot. 

 
31 We expect to find an effect in the annual mean of PM2.5 from our interventions in the order of 

two to three times as large as that in Balakrishnan and Tsaneva (2021). 
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Cognitive assessment, 

Peabody Picture Test (index) 

0 1 0.136 0.22 0.18 (Boys) 

0.55 (Girls) 

Balakrishnan and 

Tsaneva (2021) 

Final Exams N/A N/A N/A N/A N/A  

  596 
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4. Data 597 

 598 

a. Data collection and processing 599 

As stated above, we collaborate with Kendriya Vidyalaya (KV) schools in Delhi. To 600 

collect student-level data we will use a combination of survey instruments (both 601 

questionnaires and a low-cost medical device for assessing lung capacity and 602 

administrative data on attendance and grades in final exams. The survey instruments 603 

would be executed with the help of a survey team with prior experience and training for 604 

collecting data from school students. Moreover, we will deploy air pollution monitors 605 

inside classrooms to assess indoor PM air pollution while students are in the classroom. 606 

The survey questionnaire is divided into multiple sections. Section 1 starts with questions 607 

about simple socioeconomic indicators and questions about self-reported respiratory 608 

health symptoms experienced over a recent period of time. Then it moves onto questions 609 

about air pollution. These include questions about knowledge and understanding of the 610 

problem of air pollution, questions about capacity to identify periods of time with high 611 

air pollution (by means of the Air Quality Index, AQI), and questions about knowledge 612 

and practice of behavioral strategies to mitigate exposure to high air pollution. Sections 613 

2 and 3 have questions for assessing learning of language and math (this is borrowed 614 

from the India chapter of the Young Lives survey).32 Finally, section 4 has questions on a 615 

memory test consisting of connecting visual shapes (Corsi memory test). A working draft 616 

of the questionnaires is attached in Appendix B. 617 

For collecting data on a student's lung capacity we will be using a low cost Peak 618 

Expiratory Flow (PEF) meter.33 PEF tests will be administered individually by well-619 

trained enumerators to a subsample of students in each classroom.  620 

For collecting data on indoor PM pollution we will be using a low-cost monitor 621 

manufactured by Purelogic Labs India, an air quality company based in Delhi, India.34 622 

This monitor records PM2.5 and PM10 every 20 minutes and records this data in its built-623 

in SD card.  624 

 
32 The questionnaires are borrowed from the India chapter of the Young Lives School survey 

https://www.younglives.org.uk/india-school-survey. 
33 Specifically, we will be using a Rossmax PF102C Peak Flow Meter (https://amz.run/9Zah). 
34 Specifically, we will deploy procure and deploy Purelogic Labs’ Prana Air Smart Indoor PM 

Monitor (https://www.pranaair.com/air-quality-monitor/smart-indoor-pm-monitor/). 

https://www.younglives.org.uk/india-school-survey
https://amz.run/9Zah
https://www.pranaair.com/air-quality-monitor/smart-indoor-pm-monitor/
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 625 

b. Timeline and implementation 626 

 627 

We will conduct the intervention during late 2024 and into early 2025 (November 2024 628 

through January 2025). As shown in Figure 1 above, this is the period of time in which 629 

PM pollution in Delhi peaks up and reaches its highest levels.35 The deployment of the 630 

PM pollution monitors in KV School classrooms will begin earlier, in the summer of 631 

2024 (thus, allowing for pre-treatment data collection). The main data collection, 632 

however, will be carried out in November-December of 2024, and early February 2025. 633 

The baseline data survey and lung capacity tests will be conducted on October 28th 634 

through November 4th. During this time, we will also conduct the Educational and 635 

Behavioral Strategies treatment in randomly selected school classes. At this time we will 636 

also deploy the HEPA purifiers in randomly selected classrooms, and these will be 637 

running throughout the Winter teaching term. In addition, there will be a midline survey 638 

and lung capacity tests before the Christmas break (on December 17th to 13th).36 And 639 

there will be an endline on February 3rd to the 7th. Finally, there will be a follow-up data 640 

collection in which we will obtain administrative data on students’ attendance and grades 641 

in final examinations. Figure 2 below shows a visual timeline of events. 642 

 643 

 
35 The reason for termination in December 2024 is to meet the expenditure schedule required by 

the current funding organizations. However, depending on the availability of funds, we may 

extend the intervention and data collection into early 2025 and we may conduct an additional 

round of surveys around February 2025. 
36 This could eventually be relabeled as a ‘midline survey’ in case we could extend the data 

collection into early 2025. 
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 644 

Figure 2: Project Timeline 645 

 646 

5. Statistical Analysis 647 

 648 

In this work we aim to assess whether technological and behavioral strategies to mitigate 649 

effects of high air pollution can result in improved health and better educational outcomes 650 

for students in heavily air polluted cities. To that end, here we outline an empirical 651 

strategy to first estimate the effects of these strategies on mitigating indoor air pollution 652 

and exposure. Specifically, we want to empirically test the following hypotheses. 653 

 654 

Hypothesis 1.1.a: Students learn and understand (i) the effects of air pollution in health, 655 

(ii) how to identify critical periods of air pollution (i.e., high AQI), and (iii) strategies to 656 

mitigate exposure.  657 

We estimate the following equation: 658 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑖𝑐𝑠𝑡 = 𝛼 + 𝛽𝑡𝐸𝐵𝑆𝑖𝑐𝑠 + 𝛿𝑖 + 𝜆𝑐𝑠𝐷𝑡 + 𝜖𝑖𝑐𝑠𝑡 (2) 

Where 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑖𝑐𝑠𝑡 refers to three separate indices of learning and understanding of the 659 

concepts in components 1, 2 and 3 (as in section 3 above37) for student 𝑖 in classroom 𝑐 660 

 
37 Component 3 lists personal behavioral strategies. We will create a score of the intensity of 

adoption of each one of the strategies (listed as a through k above) as well as an index of average 
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in school 𝑠 and survey-round 𝑡. In this equation 𝐸𝐵𝑆𝑖𝑐𝑠 is a dummy that denotes whether 661 

a student and his/her classroom has been randomly assigned to receiving treatment EBS, 662 

𝛿𝑖 denotes student-specific fixed effect, 𝜆𝑐𝑠 denotes school-classroom-specific fixed 663 

effects, 𝐷𝑡 denotes survey-round specific dummies and 𝜖𝑖𝑐𝑠𝑡 is an error term. The 664 

parameter of interest 𝛽𝑡 captures the differential effect on learning and understanding of 665 

(i) through (iii) of assignment to treatment EBS, while allowing for this effect to change 666 

over consecutive survey rounds 𝑡. A more general specification aggregates over all 667 

survey-rounds 𝑡 and, accordingly, estimates 𝛽 instead of 𝛽𝑡. 668 

We estimate 𝛽𝑡 in equation (2) by running an OLS regression clustering standard errors 669 

at the school-classroom and survey-round level. To test Hypothesis H1.1.a. we test the 670 

null hypothesis that 𝛽�̂� < 0 against the alternative that 𝛽�̂� = 0. We also evaluate the more 671 

general specification, with only 𝛽. 672 

Moreover, it could be that the effect of treatment EBS on learning varies by student’s 673 

school grade, such that those students in 8th grade could more easily grasp the content of 674 

the educational campaign than, say, those students in 6th or 7th grade. To examine this 675 

possible differential effect by school grade we interact 𝐸𝐵𝑆𝑖𝑐𝑠 with 𝐷𝑔, where 𝐷𝑔 is a 676 

school grade-specific dummy.38 677 

 678 

Hypothesis 1.1.b: Students change their behavior so as to mitigate their personal 679 

exposure.  680 

We estimate the following equation: 681 

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑖𝑐𝑠𝑡 = 𝛼 + 𝛽𝑡𝐸𝐵𝑆𝑖𝑐𝑠 + 𝛿𝑖 + 𝜆𝑐𝑠𝐷𝑡 + 𝜖𝑖𝑐𝑠𝑡 (3) 

Where 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑖𝑐𝑠𝑡 refers to an index of self-reported behaviors to mitigate exposure to 682 

high air pollution for student 𝑖 in classroom 𝑐 in school 𝑠 and in survey-round 𝑡. 683 

Moreover, 𝐸𝐵𝑆𝑖𝑐𝑠, 𝛿𝑖, 𝜆𝑐𝑠, 𝐷𝑡 and 𝜖𝑖𝑐𝑠𝑡 are defined as in equation (2) above. To assess 684 

Hypothesis 1.2.b we test the null hypothesis that 𝛽�̂� < 0, against the alternative that 𝛽�̂� =685 

0, where we obtain 𝛽�̂� by OLS with cluster-robust standard errors. We also test the more 686 

 

intensity of adoption. Where, as before, intensity of adoption refers to: ‘always’, ‘usually’, ‘often’ 

‘seldom’, ‘rarely’, and ‘never’. 
38 Recall that we will randomize assignment to treatment at the school grade level, so that, as 

recommended by Athey and Imbens (2017), we should not be including school-grade-specific 

fixed effects in our model. 
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general version substituting 𝛽 for 𝛽𝑡. Additionally, to examine school grade-specific 687 

effects of treatment EBS on adoption of behavioral strategies we test the school grade-688 

specific model by interacting 𝐸𝐵𝑆𝑖𝑐𝑠 with the grade-specific dummy 𝐷𝑔. 689 

 690 

Hypothesis H1.2: Air purifiers Reduce air pollution while students are in the classroom. 691 

Our empirical strategy consists of estimating the following equation. 692 

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑠𝑡 = 𝛼 + 𝛽𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑟𝑐𝑠𝑡 + 𝜆𝑐𝑠 + 𝛤𝑡 + 𝜖𝑐𝑠𝑡  (1) 

Where 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑡 denotes particle pollution (say, fine particulate matter, PM2.5) in 693 

classroom 𝑐 in school 𝑠 in period 𝑡. 𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑟𝑐𝑠𝑡 is a dummy equal to one if the classroom 694 

has been randomly assigned a purifier and zero otherwise. We control for school-695 

classroom-specific fixed effect 𝜆𝑐𝑠, which may capture factors such as: different levels 696 

of principal's engagement and awareness about air pollution issues, whether 697 

schools/classrooms are differentially exposed to ambient air pollution, whether 698 

classrooms vary in the level of air exchange with outdoor air pollutants, classroom 699 

volumetric size, etc. Moreover, we control for a set of time-specific fixed effects, 𝛤𝑡, 700 

accounting for the differential air pollution during different periods of time throughout 701 

the year (days, season), as well as during different times of the day (morning, afternoon, 702 

etc.). Finally, 𝜖𝑐𝑠𝑡 is an unobserved error term. The parameter 𝛽 captures the effect of the 703 

HEPA purifier on indoor particle pollution. We estimate 𝛽 by running an OLS regression 704 

of equation (1), clustering standard errors at the school-classroom level. To test 705 

Hypothesis H1.2. we test the null hypothesis that �̂� < 0 against the alternative that �̂� = 0. 706 

 707 

Hypothesis 2: HEPA Purifiers in classrooms and personal mitigation strategies improve 708 

students’ health.  709 

We estimate the following equation: 710 

𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑐𝑠𝑡 = 𝛼 + 𝛽𝑡𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠 + 𝛿𝑖 + 𝜆𝑐𝑠𝐷𝑡 + 𝜖𝑖𝑐𝑠𝑡 (4) 

Where 𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑐𝑠𝑡 refers to respiratory health of student 𝑖 in classroom 𝑐 in school 𝑠 and 711 

survey-round 𝑡. Specifically, lung capacity (FEV1 and PEF, as measured by spirometry) 712 

and an index of self-reported health. Variables 𝛿𝑖, 𝜆𝑐𝑠, 𝐷𝑡, and 𝜖𝑖𝑐𝑠𝑡 are defined as before. 713 

Moreover, 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠 refers to either 𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑟𝑐𝑠 (for treatment Purifier) or 𝐸𝐵𝑆𝑖𝑐𝑠 714 
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(for treatment EBS), and 𝛽𝑡 captures the effect of assignment to any of the mitigation 715 

strategy treatments on students’ respiratory health. A more general version substitutes 𝛽𝑡 716 

simply for 𝛽. As before, we estimate 𝛽𝑡 with cluster-robust standard errors accounting 717 

for serial correlation. To assess Hypothesis 2 we test the null of 𝛽𝑡 > 0 against the 718 

alternative 𝛽𝑡 = 0.   719 

Moreover, to assess whether there is a differential effect of the two treatments (treatment 720 

Purifier vs. treatment EBS), we estimate equation (4) with both treatments and conduct 721 

an F-test of equality of the parameter estimates associated to each treatment. In addition, 722 

it could be that the effect of mitigation strategies on health varies by student’s age. As 723 

student’s age is almost perfectly correlated with student's school grade, we examine the 724 

differential effects of the mitigation strategies by school grade by interacting 725 

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠 with the grade-specific dummy 𝐷𝑔. 726 

 727 

Hypothesis 3: Technological and behavioral strategies, and their associated 728 

improvements in respiratory health, result in better educational outcomes. 729 

We estimate the following equation: 730 

𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠𝑡 = 𝛼 + 𝛽𝑡𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠 + 𝛿𝑖 + 𝜆𝑐𝑠𝐷𝑡 + 𝜖𝑖𝑐𝑠𝑡 (5) 

Where 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠𝑡 refers to scores in standardized cognitive tests, school attendance 731 

and grades in final exams of student 𝑖 in classroom 𝑐 in school 𝑠 and survey-round 𝑡.39  732 

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠, 𝛿𝑖, 𝜆𝑐𝑠, 𝐷𝑡 and 𝜖𝑖𝑐𝑠𝑡 are defined as before. When running these 733 

regressions, we also evaluate whether there is a differential effect of each of the two 734 

treatments on educational outcomes by means of running (5) with the two treatments and 735 

then conducting an F-test of equality of treatment effects. Moreover, it could be that the 736 

effects of mitigation strategies on educational outcomes are mediated by the student’s 737 

age (proxied by his/her school grade). Thereby, we also interact 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠 with the 738 

grade-specific dummy 𝐷𝑔. 739 

In addition, to identify effects on education that are directly linked to the effect of 740 

assignment to treatment – via its associated effect on student’s respiratory health – we 741 

 
39 Notice that for school attendance and exam grades we will not be using midlines survey rounds 

but will be using and endline survey round only. 
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estimate equation (6) below instrumenting 𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑐𝑠𝑡 for 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠  (as in equation 742 

(4) above) for each mitigation strategy as well as for both strategies simultaneously.40 743 

 744 

𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠𝑡 = 𝛼 + 𝛽𝑡𝐻𝑒𝑎𝑙𝑡ℎ𝑖𝑐𝑠𝑡 + 𝛿𝑖 + 𝜆𝑐 + 𝐷𝑡 + 𝜖𝑖𝑐𝑡 (6) 

Thus, we estimate equation (6) using predicted health, 𝐻𝑒𝑎𝑙𝑡ℎ̂
𝑖𝑐𝑠𝑡, running a GMM-IV 745 

regression with 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑐𝑠  as instruments, and with cluster-robust standard errors 746 

accounting for serial correlation.  We also estimate school-grade specific effects of 747 

predicted health by interacting it with the dummy 𝐷𝑔. Therefore, to assess Hypothesis 3 748 

we test the null of 𝛽𝑡 > 0 against the alternative 𝛽𝑡 = 0 for standardized cognitive tests 749 

and the more general model, using 𝛽, for school attendance, exam grades and 750 

standardized cognitive tests.  751 

 752 

Other Heterogeneous Effects 753 

 754 

We may also look at gender heterogeneity. Recent evidence from rural India suggests 755 

that girls are more sensitive than boys to the adverse effect of air pollution on math and 756 

language test scores (Balakrishnan and Tsaneva, 2021). Balakrishnan and Tsaneva 757 

(2021) hypothesize that this could be due to girls experiencing worse health and worse 758 

access to health care at baseline. However, this gender heterogeneity has not been 759 

examined for urban areas in India, which are exposed to much higher levels of air 760 

pollution than rural areas. To examine and test for heterogeneous effects we will interact 761 

the main dependent variable in equations (5) and (6) with a dummy variable that captures 762 

this heterogeneity (i.e., a gender indicator).  763 

  764 

 
40 It could be that parents and/or children believe that students should attend school because there 

is a HEPA purifier in the classroom or because students are learning about personal exposure 

mitigation strategies, even though these strategies may have no real effect on health. To address 

this potential effect we use instrumental variable regression. 
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Appendices 1039 

A. Additional Materials 1040 

1. Pilot Analysis 1041 

 1042 

A pilot study was conducted on a sample of 7 schools during the period August through 1043 

December 2022. The intervention consisted of deploying large-capacity HEPA purifiers 1044 

in 3rd grade classrooms. Due to the reduced number of devices all schools were treated 1045 

(i.e., there was no control group), benefiting a total of 157 children. The pilot’s objective 1046 

was to assess the performance of the air purifier devices in a school environment over a 1047 

long period of time, and to estimate the potential effects on students’ attendance resulting 1048 

from reductions in PM pollution inside the classroom. 1049 

 1050 

To measure air pollution, the head teacher in each class was asked to record indoor PM 1051 

pollution levels – as displayed by the devices – four times per day (i.e., at the start of the 1052 

days, before and after each recess, and at the end of the day). Daily attendance at the 1053 

individual level data was provided by each school and month-level attendance at the 1054 

class-level was obtained for comparable schools. We calculated attendance rates for both 1055 

treated schools and non-treated schools for classes in 2nd, 3rd and 4th grade. Moreover, we 1056 

generated a dummy variable for before and after the air purifiers were deployed (dummy 1057 

‘After’) and a dummy variable denoting those schools that received the air purifier 1058 

(dummy ‘AirPurSchool’), and a third dummy variable denoting the interaction of these 1059 

two (dummy ‘WithAirPur’). The parameter associated with this interactive dummy 1060 

represents the difference-in-difference estimate of the effect of an air purifier in the 1061 

classroom on school attendance rate (the standard errors are clustered at the school-level). 1062 

Results from Table A.1 below show that the deployment of air purifiers resulted in an 1063 

increase of 6 percentual points in attendance rate, which translates into an 8 percent 1064 

increase in school attendance.  1065 
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 1066 

Table A.1: Parameter estimates from Difference-in-Difference regressions analysis. 1067 

  1068 
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1. Figure A.1: Average PM2.5 Pollution in Indian States 1069 

 

 
Figure 2: Annual average PM 2.5 for Indian states, in 2018. Source: urbanemissions.info 

The top panel shows state wise average annual PM2.5 concentrations in 2018. Darker 1070 

colors imply higher concentrations, while lighter colors imply lower concentrations. The 1071 

scale ranges from 0 to 123 𝜇/m3. The states that are located in the northern part of the 1072 

country are much more polluted, in particular the states located just south of the 1073 
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Himalayan Mountain range. Using the national standard of 40 𝜇/m3, the bottom panel in 1074 

Figure 2 splits states into whether their annual averages were above or below this national 1075 

standard. States colored blue had annual average PM2.5 concentrations below the national 1076 

standard, and thus met the national standard. States colored red had annual average PM2.5 1077 

concentrations above the national standard, and thus exceeded the national standard. As 1078 

is clear, most states located in the central or northern parts of the country had PM2.5 levels 1079 

above the national standard. 1080 

  1081 
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B. Survey Questionnaires 1082 

1. Air Pollution, Respiratory Symptoms & Socioeconomics 1083 

For our project-specific questionnaire, please open this document: 1084 

https://drive.google.com/file/d/1wqgeTLQKyOiHShsCCcTy4h9Mt47ZIWFP/view?usp=sharing 1085 

 1086 

 1087 

 1088 

 1089 

 1090 

 1091 

 1092 

 1093 
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2. Young Lives School Survey – Language Questionnaire 1112 

For the language questionnaire (in English), please open this document: 1113 

https://www.younglives.org.uk/sites/default/files/migrated/TEST_English%20Form_Wave%2011114 

%20FINAL.pdf 1115 

 1116 

 1117 

 1118 

 1119 

 1120 

 1121 

 1122 

 1123 

 1124 

 1125 

 1126 

 1127 

 1128 

 1129 

 1130 

 1131 

 1132 

 1133 

 1134 

 1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 

 1142 

 1143 

  1144 

https://www.younglives.org.uk/sites/default/files/migrated/TEST_English%20Form_Wave%201%20FINAL.pdf
https://www.younglives.org.uk/sites/default/files/migrated/TEST_English%20Form_Wave%201%20FINAL.pdf
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3. Young Lives School Survey – Math Questionnaire 1145 

For the math questionnaire (in English), please open this document: 1146 

https://www.younglives.org.uk/sites/default/files/2021-12/School%20survey%202016-1147 

17_in_w1_Students%20Maths%20Test_0.pdf 1148 

 1149 

  1150 

https://www.younglives.org.uk/sites/default/files/2021-12/School%20survey%202016-17_in_w1_Students%20Maths%20Test_0.pdf
https://www.younglives.org.uk/sites/default/files/2021-12/School%20survey%202016-17_in_w1_Students%20Maths%20Test_0.pdf
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 1151 

4. Corsi Memory Test  1152 

Following Berkouwer and Dean (2024), we will implement the Reverse Corsi Block task on a 1153 

Tablet device. For each trial, nine blue blocks appear in random locations on the screen. They 1154 

take turns lighting up yellow. Students are then asked to tap the blocks in reverse order as how 1155 

they lit up (see figure below). For each block in the sequence, if the student taps on the correct 1156 

block, it turns on green and the student can proceed to tapping on the next block in the sequence. 1157 

If the respondent taps on the wrong block, it flashes red and the trial ends. The student then 1158 

moves on to the next trial. The first trial sequence contains only two blocks, and consecutive trials 1159 

keep on adding one additional block. 1160 

 1161 

 1162 

 1163 

 1164 

  1165 
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C. Figures for Educational and Behavioral Strategies 1166 

1. Example of Educational Material for Teaching About the Effects of 1167 

Air Pollution on Health. 1168 

 1169 

  1170 



 

 

 

49 

 

 

2. Example of Educational Material for Teaching Students How to 1171 

Identify When Air Pollution Has Reached Critical Levels. 1172 

 1173 

 1174 

  1175 
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3. Example of Educational Material for Teaching About Strategies to 1176 

Mitigate the Effects of Air Pollution on Health. 1177 

 1178 


